求垂直于直線并且與曲線相切的直線方程.

.

解析試題分析:先根據(jù)所求直線與直線垂直求出所求直線的斜率,然后設(shè)出切點(diǎn),由,計(jì)算出的值,接著計(jì)算出的值,最后可寫出切線的方程:,并化成一般方程即可.
試題解析:因?yàn)橹本的斜率為,所以垂直于直線并且與曲線相切的直線的斜率為
設(shè)切點(diǎn)為,函數(shù)的導(dǎo)數(shù)為
所以切線的斜率,得
代入到,即
∴所求切線的方程為.
考點(diǎn):1.兩直線垂直的判定與性質(zhì);2.導(dǎo)數(shù)的幾何意義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

把一顆骰子投擲兩次,觀察擲出的點(diǎn)數(shù),并記第一次擲出的點(diǎn)數(shù)為,第二次擲出的點(diǎn)數(shù)為.試就方程組(※)解答下列問題:
(1)求方程組沒有解的概率;
(2)求以方程組(※)的解為坐標(biāo)的點(diǎn)落在第四象限的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C1和拋物線C2的焦點(diǎn)均在軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表中:


3
-2
4



0
-4

 
(1)求曲線C1,C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓C1交于不同兩點(diǎn)M、N,且。請(qǐng)問是否存在直線過拋物線C2的焦點(diǎn)F?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長(zhǎng)為2的正方形.
(1)求橢圓的方程;
(2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn).證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,頂點(diǎn),邊上的中線所在直線的方程是,邊上高所在直線的方程是
(1)求點(diǎn)、C的坐標(biāo); (2)求的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l:x+2y-2=0,試求:
(1) 點(diǎn)P(-2,-1)關(guān)于直線l的對(duì)稱點(diǎn)坐標(biāo);
(2) 直線l1:y=x-2關(guān)于直線l對(duì)稱的直線l2的方程;
(3) 直線l關(guān)于點(diǎn)(1,1)對(duì)稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求傾斜角是45°,并且與原點(diǎn)的距離是5的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

.已知,直線經(jīng)過定點(diǎn),定點(diǎn)坐標(biāo)為  ▲  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,A(1,-1),B(1,1),C(3,-1),求三邊所在直線的傾斜角和斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案