【題目】《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有一個“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1尺.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設,現(xiàn)有下述四個結論:
①水深為12尺;②蘆葦長為15尺;③;④.
其中所有正確結論的編號是( )
A.①③B.①③④C.①④D.②③④
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點到直線的距離為.
(1)求拋物線的方程;
(2)如圖,若,直線與拋物線相交于兩點,與直線相交于點,且,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點,以坐標原點O為極點,軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足| ,記點N的軌跡為曲線C.
(1)①設動點,記是直線的向上方向的單位方向向量,且,以t為參數(shù)求直線的參數(shù)方程
②求曲線C的極坐標方程并化為直角坐標方程;
(2)設直線與曲線C交于P,Q兩點,求的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在日常生活中,石子是我們經(jīng)常見到的材料,比如在各種建筑工地或者建材市場上常常能看到堆積如山的石子,它的主要成分是碳酸鈣.某雕刻師計劃在底面邊長為2m、高為4m的正四棱柱形的石料中,雕出一個四棱錐和球M的組合體,其中O為正四棱柱的中心,當球的半徑r取最大值時,該雕刻師需去除的石料約重___________kg.(最后結果保留整數(shù),其中,石料的密度,質(zhì)量)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】光伏發(fā)電是利用太陽能電池及相關設備將太陽光能直接轉化為電能.近幾年在國內(nèi)出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:
年份 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
新增光伏裝機量兆瓦 | 0.4 | 0.8 | 1.6 | 3.1 | 5.1 | 7.1 | 9.7 | 12.2 |
某位同學分別用兩種模型:①,②進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于):
經(jīng)過計算得,,,,其中,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.
(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù)建立關于的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數(shù)時精確到0.01)
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面ABB1A1是邊長為2的菱形,且CA=CB1.
(1)證明:面CBA1⊥面CB1A;
(2)若∠BAA1=60°,A1C=BC=BA1,求點C到平面A1BC1的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(多選題)下列說法正確的是( )
A.在回歸直線方程中,當解釋變量每增加1個單位時,預報變量平均減少2.3個單位
B.兩個具有線性相關關系的變量,當相關指數(shù)的值越接近于0,則這兩個變量的相關性就越強
C.若兩個變量的相關指數(shù),則說明預報變量的差異有88%是由解釋變量引起的
D.在回歸直線方程中,相對于樣本點的殘差為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com