如圖,在三棱錐中,平面,,為
側(cè)棱上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.
(1)證明:平面;
(2)求三棱錐的體積;
(1)見解析(2)
【解析】本題考查由三視圖求面積、體積,直線與平面平行的性質(zhì),直線與平面垂直的判定,考查空間想象能力,邏輯思維能力,計算能力,是中檔題
(Ⅰ)證明AD垂直平面PBC內(nèi)的兩條相交直線PC、BC,即可證明AD⊥平面PBC;
(Ⅱ)求出三棱錐的底面ABC的面積,求出高BC,再求三棱錐D-ABC的體積;
解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012091821044215003370/SYS201209182105268082719384_DA.files/image002.png">平面,所以,又,所以平面,所以.由三視圖可得,在中,,為中點(diǎn),所以,
所以平面,
(2)由三視圖可得,
由⑴知,平面,
又三棱錐的體積即為三棱錐的體積,
所以,所求三棱錐的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高三數(shù)學(xué)教學(xué)與測試 題型:044
如圖,在三棱錐P-ABC中,∠ACB=,∠B=,PC⊥平面ABC,AB=8,PC=6,M,N分別是PA,PB的中點(diǎn),設(shè)△MNC所在平面與△ABC所在平面交于直線l.(1)判斷l與MN的位置關(guān)系;(2)求點(diǎn)M到l的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四棱錐中,側(cè)面
是正三角形,且與底面垂直,底面是邊長為2的菱形,,是中點(diǎn),過、、三點(diǎn)的平面交于.
(1)求證:; (2)求證:是中點(diǎn);(3)求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)判斷l與MN的位置關(guān)系;
(2)求點(diǎn)M到l的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com