如圖,在三棱錐中,平面,,

側(cè)棱上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.

(1)證明:平面;

(2)求三棱錐的體積;

 

【答案】

(1)見解析(2)

【解析】本題考查由三視圖求面積、體積,直線與平面平行的性質(zhì),直線與平面垂直的判定,考查空間想象能力,邏輯思維能力,計算能力,是中檔題

(Ⅰ)證明AD垂直平面PBC內(nèi)的兩條相交直線PC、BC,即可證明AD⊥平面PBC;

(Ⅱ)求出三棱錐的底面ABC的面積,求出高BC,再求三棱錐D-ABC的體積;

解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012091821044215003370/SYS201209182105268082719384_DA.files/image002.png">平面,所以,又,所以平面,所以.由三視圖可得,在中,,中點(diǎn),所以,

所以平面,

(2)由三視圖可得, 

由⑴知,平面

又三棱錐的體積即為三棱錐的體積,

所以,所求三棱錐的體積

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB中點(diǎn),過A、N、D三點(diǎn)的平面交PC于M.
(Ⅰ)求證:AD∥MN;
(Ⅱ)求證:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,N是PB中點(diǎn),過A、N、D三點(diǎn)的平面交PC于M.
(Ⅰ)求證:PD∥平面ANC;
(Ⅱ)求證:M是PC中點(diǎn);
(Ⅲ)若PD⊥底面ABCD,PA=AB,BC⊥BD,證明:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高三數(shù)學(xué)教學(xué)與測試 題型:044

如圖,在三棱錐P-ABC中,∠ACB=,∠B=,PC⊥平面ABC,AB=8,PC=6,M,N分別是PA,PB的中點(diǎn),設(shè)△MNC所在平面與△ABC所在平面交于直線l.(1)判斷l與MN的位置關(guān)系;(2)求點(diǎn)M到l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐中,側(cè)面

是正三角形,且與底面垂直,底面是邊長為2的菱形,,中點(diǎn),過、三點(diǎn)的平面交. 

(1)求證:;   (2)求證:中點(diǎn);(3)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P—ABC中,∠ACB=90°,∠B=60°,PC⊥平面ABC,AB=8,PC=6,M、N分別是PA、PB的中點(diǎn),設(shè)△MNC所在平面與△ABC所在平面交于直線l,

(1)判斷l與MN的位置關(guān)系;

(2)求點(diǎn)M到l的距離.

查看答案和解析>>

同步練習(xí)冊答案