A. | ¬p為:?x∈(1,+∞),2x-1-1≤0 | B. | ¬p為:?x∈(1,+∞),2x-1-1<0 | ||
C. | ¬p為:?x∈(-∞,1],2x-1-1>0 | D. | ¬p是假命題 |
分析 根據(jù)已知中原命題,寫(xiě)出命題的否定,并判斷其真假,可得答案.
解答 解:∵命題p:?x∈(1,+∞),2x-1-1>0,
∴命題¬p為:?x∈(1,+∞),2x-1-1≤0;
∵f(x)=2x-1-1在(1,+∞)為增函數(shù),
∴f(x)>f(1)=0
故p是真命題,即?p是假命題.
故選:D
點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,全稱(chēng)命題,分類(lèi)討論思想,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)≥f(b)且當(dāng)x>0時(shí)f(b-x)≥f(b+x) | B. | f(x)≥f(b)且當(dāng)x>0時(shí)f(b-x)≤f(b+x) | ||
C. | f(x)≥f(a)且當(dāng)x>0時(shí)f(a-x)≥f(a+x) | D. | f(x)≥f(a)且當(dāng)x>0時(shí)f(a-x)≤f(a+x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com