【題目】設(shè) .若f(x)=x2+px+q的圖象經(jīng)過兩點(α,0),(β,0),且存在整數(shù)n,使得n<α<β<n+1成立,則( )
A.
B.
C.
D.
【答案】B
【解析】解:∵f(x)=x2+px+q的圖象經(jīng)過兩點(α,0),(β,0),
∴f(x)=x2+px+q=(x﹣α)(x﹣β)
∴f(n)=(n﹣α)(n﹣β),f(n+1)=(n+1﹣α)(n+1﹣β),
∴min{f(n),f(n+1)}≤ = ≤ = =
又由兩個等號不能同時成立
故
故選:B
【考點精析】利用二次函數(shù)的性質(zhì)和基本不等式對題目進(jìn)行判斷即可得到答案,需要熟知當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減;基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是焦距為的橢圓的左、右頂點, 為橢圓上非頂點的點,直線的斜率分別為,且.
(1)求橢圓的方程;
(2)直線(與軸不重合)過點且與橢圓交于兩點,直線與交于點,試求點的軌跡是否是垂直軸的直線,若是,則求出點的軌跡方程,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的分別為14,18,則輸出的為( )
A. 0 B. 2 C. 4 D. 14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2013年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,85],得到的頻率分布直方圖如圖所示.
(1)求第3,4,5組的頻率;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書中有這樣一道題:把120個面包分成5份,使每份的面包數(shù)成等差數(shù)列,且較多的三份之和恰好是較少的兩份之和的7倍,則最少的那份有( )個面包.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進(jìn)行最后一輪較量,獲得本場比賽勝利,最終人機(jī)大戰(zhàn)總比分定格在.人機(jī)大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(1)根據(jù)已知條件完成如圖列聯(lián)表,并據(jù)此資料判斷你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記所抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列,期望和方差.
附:,其中.
0.05 | 0.010 | |
3.74 | 6.63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一汽車廠生產(chǎn)A、B、C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如表(單位:輛):
轎車A | 轎車B | 轎車C | |
舒適型 | 100 | 150 | z |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.
(1)求z的值;
(2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把這8輛轎車的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,且其6個頂點都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com