已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的正半軸重合.若曲線C1的方程為ρ2=8ρsinθ-15,曲線C2的方程為
x=2
2
cosα
y=
2
sinα
(α為參數(shù)).
(1)將C1的方程化為直角坐標(biāo)方程;
(2)若C2上的點Q對應(yīng)的參數(shù)為α=
4
,P為C1上的動點,求PQ的最小值.
(1)曲線C1的方程為ρ2=8ρsinθ-15化為直角坐標(biāo)方程為:
x2+y2-8y+15=0;(3分)其圓心坐標(biāo)(0,4),半徑為:1.
(2)當(dāng)α=
4
,時,得Q(-2,1)它到曲線C1的圓心C1(0,4)的距離為:
13

∴PQ的最小值
13
-1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在極坐標(biāo)系中,圓C的方程為ρ=2sin,以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (t為參數(shù)),判斷直線和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.求:
(1)求圓的直角坐標(biāo)方程;
(2)若是直線與圓面的公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求圓心在A(a>0),半徑為a的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,由三條直線,圍成圖形的面積是________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,直線的參數(shù)方程是(t是參數(shù)), 以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,若圓C的極坐標(biāo)方程是ρ=4cosθ,且直線與圓C相切,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線的參數(shù)方程為(t為參數(shù)),若以直角坐標(biāo)系點為極點,軸為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為ρ=
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(2)若直線與曲線交于A、B兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線的極坐標(biāo)方程為,則曲線的直角坐標(biāo)方程為________________。

查看答案和解析>>

同步練習(xí)冊答案