練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;

(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年11月、12月全國大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個(gè)星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數(shù)y(個(gè))

22

25

29

26

16

12

該興趣小組確定的研究方案是先從這六組數(shù)據(jù)中選取2組用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。

(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)星期的概率;

(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請(qǐng)根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程

(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式: )

參考數(shù)據(jù): 1092, 498

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解華師一附中學(xué)生喜歡吃辣是否與性別有關(guān),調(diào)研部(共10人)分三組對(duì)高中三個(gè)年級(jí)的學(xué)生進(jìn)行調(diào)查,每個(gè)年級(jí)至少派3個(gè)人進(jìn)行調(diào)查.(1)求調(diào)研部的甲、乙兩人都被派到高一年級(jí)進(jìn)行調(diào)查的概率.(2)調(diào)研部對(duì)三個(gè)年級(jí)共100人進(jìn)行了調(diào)查,得到如下的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為喜歡吃辣與性別有關(guān)?

喜歡吃辣

不喜歡吃辣

合計(jì)

男生

10

女生

20

30

合計(jì)

100

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過焦點(diǎn)且斜率存在的直線與拋物線交于兩點(diǎn),且點(diǎn)在點(diǎn)上方,點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.

(1)求證:直線過某一定點(diǎn);

(2)當(dāng)直線的斜率為正數(shù)時(shí),若以為直徑的圓過,求的內(nèi)切圓與的外接圓的半徑之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:

(1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計(jì)

不支持

支持

總計(jì)

參考數(shù)據(jù):

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)在區(qū)間上有最大值4,最小值為0.

1)求函數(shù)的解析式;

2)設(shè),若對(duì)任意恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,且,求的最小值;

(2)若,且上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

同步練習(xí)冊(cè)答案