【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按1小時計算).有甲、乙兩人獨立來該租車點騎游(各組一車一次).設甲、乙不超過兩小時還車的概率分別為 , ;兩小時以上且不超過三小時還車的概率分別為 , ;兩人租車時間都不會超過四小時.
(1)求甲、乙兩人所付租車費用相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量 ,求 的分布列.
科目:高中數學 來源: 題型:
【題目】設雙曲線 (a>0,b>0)的左焦點為F1 , 左頂點為A,過F1作x軸的垂線交雙曲線于P、Q兩點,過P作PM垂直QA于M,過Q作QN垂直PA于N,設PM與QN的交點為B,若B到直線PQ的距離大于a+ ,則該雙曲線的離心率取值范圍是( )
A.(1﹣ )
B.( ,+∞)
C.(1,2 )
D.(2 ,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+(b8)xaab,當x(,3)∪(2,+)時,f(x)<0.
(1)求f(x)的解析式;
(2)若不等式f(x)<m的解集為R,求m的取值范圍;
(3) 求不等式f(x)<m+18的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 是自然對數的底數, .
(1)求函數 的單調遞增區(qū)間;
(2)若 為整數, ,且當 時, 恒成立,其中 為 的導函數,求 的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一個以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:
(Ⅰ)該幾何體的體積;
(Ⅱ)截面ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(選修4﹣4:坐標系與參數方程)
已知曲線C1的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com