觀察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43

(1+2+3+4)2,…,根據(jù)上述規(guī)律,第四個等式為.         

(3)        

解 (1)f’(x)=,g’(x)=(x>0),

由已知得  =alnx,

=,     解德a=,x=e2,

兩條曲線交點的坐標為(e2,e)   切線的斜率為k=f’(e2)= ,

切線的方程為y-e=(x- e2).

(2)由條件知

Ⅰ 當a.>0時,令h (x)=0,解得x=,

所以當0 < x< h (x)<0,h(x)在(0,)上遞減;

x>時,h (x)>0,h(x)在(0,)上遞增。

所以x>h(x)在(0, +∞ )上的唯一極致點,且是極小值點,從而也是h(x)最小值點。

所以Φ (a)=h()= 2a-aln=2

Ⅱ當a  ≤   0時,h(x)=(1/2-2a) /2x>0,h(x)在(0,+∞)遞增,無最小值。

故 h(x) 的最小值Φ (a)的解析式為2a(1-ln2a) (a>o)

(3)由(2)知Φ (a)=2a(1-ln2a)

則 Φ 1a )=-2ln2a,令Φ 1a )=0 解得 a =1/2

當  0<a<1/2時,Φ 1a )>0,所以Φ a )  在(0,1/2) 上遞增

當  a>1/2  時, Φ 1a )<0,所以Φa ) 在 (1/2, +∞)上遞減。

所以Φa )在(0, +∞)處取得極大值Φ1/2 )=1

因為Φa )在(0, +∞)上有且只有一個極致點,所以Φ1/2)=1也是Φa)的最大值

所當a屬于 (0, +∞)時,總有Φa)  ≤  1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、觀察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=
(1+2+3+4)2,…,根據(jù)上述規(guī)律,第四個等式為
13+23+33+43+53=(1+2+3+4+5)2(或152

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列等式,13+23=32,13+23+33=62,13+23+33+43=102根據(jù)上述規(guī)律,13+23+33+43+53+63=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列等式
1=1
3+5=8
7+9+11=27
13+15+17+19=64
照此規(guī)律,第6個等式應為
31+33+35+37+39+41=216
31+33+35+37+39+41=216

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)觀察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根據(jù)以上規(guī)律,13+23+33+43+53+63+73+83=
1296
1296
.(結果用具體數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列等式:
1
3
+
2
3
=1;
7
3
+
8
3
+
10
3
+
11
3
=12;
16
3
+
17
3
+
19
3
+
20
3
+
22
3
+
23
3
=39;

則當n<m且m,n∈N表示最后結果.
3n+1
3
+
3n+2
3
+…+
3m-2
3
+
3m-1
3
=
m2-n2
m2-n2
(最后結果用m,n表示最后結果).

查看答案和解析>>

同步練習冊答案