【題目】將邊長(zhǎng)為的正方形沿對(duì)角線折疊,使得平面平面,平面,是的中點(diǎn),且.
(1)求證:;
(2)求二面角的大。
【答案】(1)見解析;(2)
【解析】
(1) 以為坐標(biāo)原點(diǎn),所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,
求出點(diǎn)三點(diǎn)的坐標(biāo),通過是的中點(diǎn),可得,利用面面垂直的性質(zhì)定理可得平面,進(jìn)而可以求出點(diǎn)的坐標(biāo),最后利用向量法可以證明出;
(2)分別求出平面、平面的法向量,最后利用空間向量夾角公式求出二面角的大。
(1)證明:以為坐標(biāo)原點(diǎn),所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,
如圖所示,則,,
取的中點(diǎn)并連接.
由題意得,
又平面平面,
平面,
,
,,
,
.
(2)解:設(shè)平面的法向量為,
則,,
令.
平面的法向量為,
所以,,
由得.
設(shè)二面角為,
則,
所以二面角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).
(1)如果直線過拋物線的焦點(diǎn),求的值;
(2)如果,證明直線必過一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),點(diǎn),,Q為平面上的動(dòng)點(diǎn),且,線段的中垂線與線段交于點(diǎn)P.
求的值,并求動(dòng)點(diǎn)P的軌跡E的方程;
若直線l與曲線E相交于A,B兩點(diǎn),且存在點(diǎn)其中A,B,D不共線,使得,證明:直線l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年9月支付寶宣布在肯德基的KPRO餐廳上線刷臉支付,也即用戶可以不用手機(jī),單單通過刷臉就可以完成支付寶支付,這也是刷臉支付在全球范圍內(nèi)的首次商用試點(diǎn).某市隨機(jī)抽查了每月用支付寶消費(fèi)金額不超過3000元的男女顧客各300人,調(diào)查了他們的支付寶使用情況,得到如下頻率分布直方圖:
若每月利用支付寶支付金額超過2千元的顧客被稱為“支付寶達(dá)人”, 利用支付寶支付金額不超過2千元的顧客稱為“非支付寶達(dá)人”.
(I)若抽取的“支付寶達(dá)人”中女性占120人,請(qǐng)根據(jù)條件完成上面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“支付寶達(dá)人”與性別有關(guān).
(II)支付寶公司為了進(jìn)一步了解這600人的支付寶使用體驗(yàn)情況和建議,從“非支付寶達(dá)人” “支付寶達(dá)人”中用分層抽樣的方法抽取8人.若需從這8人中隨機(jī)選取2人進(jìn)行問卷調(diào)查,求至少有1人是“支付寶達(dá)人”的概率.
附:參考公式與參考數(shù)據(jù)如下
,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,N為圓C:上的一動(dòng)點(diǎn),點(diǎn)D(1,0),點(diǎn)M是DN的中點(diǎn),點(diǎn)P在線段CN上,且.
(Ⅰ)求動(dòng)點(diǎn)P表示的曲線E的方程;
(Ⅱ)若曲線E與x軸的交點(diǎn)為,當(dāng)動(dòng)點(diǎn)P與A,B不重合時(shí),設(shè)直線與的斜率分別為,證明:為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,點(diǎn)I,J分別是橢圓C的右頂點(diǎn)、上頂點(diǎn),△IOJ的邊IJ上的中線長(zhǎng)為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)H(-2,0)的直線交橢圓C于A,B兩點(diǎn),若AF1⊥BF1,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮等比數(shù)列的首項(xiàng)、公比均為.
(1)試求無窮等比子數(shù)列各項(xiàng)的和;
(2)是否存在數(shù)列的一個(gè)無窮等比子數(shù)列,使得它各項(xiàng)的和為?若存在,求出所有滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)求出相關(guān)系數(shù)(精確到0.01)并加以說明;
(2)建立關(guān)于的回歸方程,預(yù)測(cè)2018年該地區(qū)患“三高”的人數(shù).
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù),
回歸方程 中:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com