已知{an}是等差數(shù)列,d為公差且不為0,a1和d均為實數(shù),它的前n項和記作Sn,設(shè)集合A={(an,)|n∈N*},B={(x,y)| x2-y2=1,x,y∈R}.
試問下列結(jié)論是否正確,如果正確,請給予證明;如果不正確,請舉例說明
(1)若以集合A中的元素作為點的坐標(biāo),則這些點都在同一條直線上;
(2)A∩B至多有一個元素;
(3)當(dāng)a1≠0時,一定有A∩B≠.
(1) 正確(2) 正確(3) 不正確
(1)正確.在等差數(shù)列{an}中,Sn=,則(a1+an),這表明點(an,)的
坐標(biāo)適合方程y(x+a1),于是點(an, )均在直線y=x+a1上
(2)正確 設(shè)(x,y)∈A∩B,則(x,y)中的坐標(biāo)x,y應(yīng)是方程組的解,由方程組消去y得:2a1x+a12=-4(*),當(dāng)a1=0時,方程(*)無解,此時A∩B=;當(dāng)a1≠0時,方程(*)只有一個解x=,此時,方程組也只有一解,故上述方程組至多有一解
∴A∩B至多有一個元素
(3)不正確.取a1=1,d=1,對一切的x∈N*,有an=a1+(n-1)d=n>0, >0,這時集合A中的元素作為點的坐標(biāo),其橫、縱坐標(biāo)均為正,另外,由于a1=1≠0 如果A∩B≠,那么據(jù)(2)的結(jié)論,A∩B中至多有一個元素(x0,y0),而x0=<0,y0=<0,這樣的(x0,y0)A,產(chǎn)生矛盾,故a1=1,d=1時A∩B=,所以a1≠0時,一定有A∩B≠是不正確的.
科目:高中數(shù)學(xué) 來源: 題型:
i |
jn |
nπ |
2 |
nπ |
2 |
Pn |
nπ |
2 |
jn |
Pn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)Sn是等差數(shù){an}的前n項和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于
A.15 B.16 C.17 D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
i |
jn |
nπ |
2 |
nπ |
2 |
Pn |
nπ |
2 |
jn |
Pn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com