在四棱錐中,平面,,.

(Ⅰ)求證:;

(Ⅱ)求與平面所成角的正弦值;

(Ⅲ)線段上是否存在點(diǎn),使平面?說明理由.

證明:(Ⅰ)在四棱錐中,因?yàn)?sub>平面平面,

所以.       因?yàn)?sub>,       所以.

       因?yàn)?sub>,       所以平面.

因?yàn)?sub>平面,所以.             

(Ⅱ) 如圖,以為原點(diǎn)建立空間直角坐標(biāo)系.  不妨設(shè),則.

.

           所以.

           設(shè)平面的法向量.

           所以 .即.

           令,則.

           所以 所以

所以與平面所成角的正弦值為.                

(Ⅲ)(法一)當(dāng)為線段的中點(diǎn)時(shí),平面.

如圖:分別取的中點(diǎn),連結(jié).

     所以,且.     因?yàn)?sub>

     所以.     所以四邊形是平行四邊形.

     所以.     因?yàn)?sub>,    所以三角形是等腰三角形.

    所以.         因?yàn)?sub>平面,        所以.

        因?yàn)?sub>,        所以平面.        所以平面.

           即在線段上存在點(diǎn),使平面.              

   (法二)設(shè)在線段上存在點(diǎn),當(dāng)時(shí),平面.

           設(shè),則.所以.

.所以.

所以.由(Ⅱ)可知平面的法向量.

平面,則.即.解得.

所以當(dāng),即中點(diǎn)時(shí),平面.   

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011年江蘇省普通高中招生考試數(shù)學(xué) 題型:解答題

(本小題滿分14分)如圖,在四棱錐中,平面PAD⊥平面ABCD,
AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn)
求證:(1)直線EF‖平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省蘭州市高三第一次(3月)診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐中,平面,底面是菱形,,

(Ⅰ)求證:;

(Ⅱ)若,求二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測理科數(shù)學(xué)試卷(解析版) 題型:解答題

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省黔東南州高三第一次高考模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐中,平面,,,

(Ⅰ)證明:;

(Ⅱ)求與平面所成角的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆黑龍江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(12分)在四棱錐中,平面PAD⊥平面ABCD,     AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn)

求證:(1)直線EF∥平面PCD;

(2)平面BEF⊥平面PAD

 

 

 

查看答案和解析>>

同步練習(xí)冊答案