(本小題滿分12分)如圖是從上下底面處在水平狀態(tài)下的棱長(zhǎng)為的正方體中分離出來(lái)的:
(1)試判斷是否在平面內(nèi);(回答是與否)
(2)求異面直線與所成的角;
(3)如果用圖示中這樣一個(gè)裝置來(lái)盛水,那么最多可以盛多少體積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有一個(gè)正四棱臺(tái)形狀的油槽,可以裝油190L,假如它的兩底面邊長(zhǎng)分別等于60cm和40cm,求它的深度為多少cm?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)P是對(duì)角線AC上一動(dòng)點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí)(不與點(diǎn)A、O重合) ,PE⊥PB交線段CD于點(diǎn)E,PF⊥CD于點(diǎn)E.
①判斷線段DF、EF的數(shù)量關(guān)系,并說(shuō)明理由;
②寫出線段PC、PA、CE之間的一個(gè)等量關(guān)系,并證明你的結(jié)論;
(2)如圖2,當(dāng)點(diǎn)P在線段OC上運(yùn)動(dòng)時(shí)(不與點(diǎn)O、C重合),PE⊥PB交直線CD于點(diǎn)E,PF⊥CD于點(diǎn)E.判斷(1)中的結(jié)論①、②是否成立?若成立,說(shuō)明理由;若不成立,寫出相應(yīng)的結(jié)論并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,,,過(guò)動(dòng)點(diǎn)A作,垂足在線段上且異于點(diǎn),連接,沿將△折起,使(如圖2所示).
(1)當(dāng)的長(zhǎng)為多少時(shí),三棱錐的體積最大;
(2)當(dāng)三棱錐的體積最大時(shí),設(shè)點(diǎn),分別為棱、的中點(diǎn),試在棱上確定一點(diǎn),使得,并求與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,四棱錐中,底面為矩形,平面,點(diǎn)分別是和的中點(diǎn).
求證:平面;
若, 四棱錐外接球的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)如圖,在四棱錐中,底面為平行四邊形,,,為中點(diǎn),平面, ,
為中點(diǎn).
(1)證明://平面;
(2)證明:平面;
(3)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,
E、F分別是AB、CD上的點(diǎn),且EF∥BC.設(shè)AE =,G是BC的中點(diǎn).
沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
(1)當(dāng)=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-BF-E的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com