【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展“中國漢字聽寫大會”的活動,為響應(yīng)學校號召,某班組建了興趣班,根據(jù)甲、乙兩人近期6次成績畫出的莖葉圖如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用a表示.已知甲、乙兩人成績的平均數(shù)相同.
(1)根據(jù)題目信息,求a的值;
(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從穩(wěn)定性的角度,你認為派誰參加比賽較合適?
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)遞減區(qū)間;
(2)當時,設(shè)函數(shù).若存在區(qū)間,使得函數(shù)在上的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)求與橢圓有共同焦點且過點的雙曲線的標準方程;
(2)已知拋物線的焦點在軸上,拋物線上的點到焦點的距離等于5,求拋物線的標準方程和的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,是平面內(nèi)的一組基向量,為內(nèi)的定點,對于內(nèi)任意一點,當時,則稱有序?qū)崝?shù)對為點的廣義坐標,若點、的廣義坐標分別為、,對于下列命題:
① 線段、的中點的廣義坐標為;
② A、兩點間的距離為;
③ 向量平行于向量的充要條件是;
④ 向量垂直于向量的充要條件是.
其中的真命題是________(請寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校數(shù)學課外興趣小組為研究數(shù)學成績是否與性別有關(guān),先統(tǒng)計本校高三年級每個學生一學期數(shù)學成績平均分(采用百分制),剔除平均分在40分以下的學生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,按性別分為兩組,并將兩組學生成績分為6組,得到如下所示頻數(shù)分布表.
分數(shù)段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
(1)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,數(shù)學成績與性別是否有關(guān);
(2)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認為“數(shù)學成績與性別有關(guān)”.
優(yōu)分 | 非優(yōu)分 | 合計 | |
男生 | |||
女生 | |||
附表及公式:
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了診斷高三學生在市“一模”考試中文科數(shù)學備考的狀況,隨機抽取了50名學生的市“一模”數(shù)學成績進行分析,將這些成績分為九組,第一組[60,70),第二組[70,80),……,第九組[140,150],并繪制了如圖所示的頻率分布直方圖.
(1)試求出的值并估計該校文科數(shù)學成績的眾數(shù)和中位數(shù);
(2)現(xiàn)從成績在[120,150]的同學中隨機抽取2人進行談話,那么抽取的2人中恰好有一人的成績在[130,140)中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于的二次函數(shù),其中,為實數(shù),事件為“函數(shù)在區(qū)間為增函數(shù)”.
(1)若為區(qū)間上的整數(shù)值隨機數(shù),為區(qū)間上的整數(shù)值隨機數(shù),求事件發(fā)生的概率;
(2)若為區(qū)間上的均勻隨機數(shù),為區(qū)間上的均勻隨機數(shù),求事件發(fā)生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com