(本題滿分10分)
如圖,已知三棱錐OABC的側(cè)棱OAOBOC兩兩垂直,且OA=2,OB=3,OC=4,EOC的中點(diǎn).

(1)求異面直線BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.
(1) (2)

試題分析:解:(I)以O為原點(diǎn),OBOC,OA分別為x,y,z軸建立空間直角坐標(biāo)系.
則有A(0,0,2),B(3,0,0),C(0,4,0),E(0,2,0).
 
所以,cos<>.          ……………………3分
由于異面直線BE與AC所成的角是銳角,
所以,異面直線BEAC所成角的余弦值是.      ……………………5分

(II),,
設(shè)平面ABE的法向量為
則由,,得
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003824509630.png" style="vertical-align:middle;" />
所以平面BEC的一個(gè)法向量為n2=(0,0,1),
所以. ……………………8分
由于二面角ABEC的平面角是n1n2的夾角的補(bǔ)角,
所以,二面角ABEC的余弦值是.……………………10分
點(diǎn)評(píng):對(duì)于角的求解問題,一般分為三步進(jìn)行,一作,二證,三解答。因此要掌握角的表示,結(jié)合定義法和性質(zhì)來分析得到角,進(jìn)而求解,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,五面體中, ,底面ABC是正三角形, =2.四邊形是矩形,二面角為直二面角,D為中點(diǎn)。
(I)證明:平面;
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正三棱柱中,E為AC中點(diǎn)

(1)求證: 
(2)求證:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知:如圖,在四棱錐中,四邊形為正方形,,且中點(diǎn).

(1)證明://平面;
(2)證明:平面平面;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在如圖所示的四棱錐中,已知 PA⊥平面ABCD, ,,
的中點(diǎn).

(1)求證:MC∥平面PAD;
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊥平面,=90°,,點(diǎn)上,點(diǎn)E在BC上的射影為F,且

(1)求證:;
(2)若二面角的大小為45°,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列結(jié)論中正確的是(  )
A.平行于平面內(nèi)兩條直線的平面,一定平行于這個(gè)平面
B.一條直線平行于一個(gè)平面內(nèi)的無數(shù)條直線,則這條直線與該平面平行
C.兩個(gè)平面分別與第三個(gè)平面相交,若交線平行則兩平面平行
D.在兩個(gè)平行平面中,一平面內(nèi)的一條直線必平行于另一個(gè)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正四面體S—ABC中,E為SA的中點(diǎn),F(xiàn)為的中心,則直線EF與平面ABC所成的角的正切值是                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知二面角αPQβ的大小為60°,點(diǎn)C為棱PQ上一點(diǎn),Aβ,AC=2,∠ACP=30°,則點(diǎn)A到平面α的距離為(      )
A.1B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案