已知R),其中為虛數(shù)單位,則

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列命題(i為虛數(shù)單位)中正確的是
①已知a,b∈R,則a=b是(a-b)+(a+b)i為純虛數(shù)的充要條件;
②當z是非零實數(shù)時,|z+
1
z
|≥2恒成立;
③復數(shù)z=(1-i)3的實部和虛部都是-2;
④如果|a+2i|<|-2+i|,則實數(shù)a的取值范圍是-1<a<1;
⑤復數(shù)z=1-i,則
1
z
+z=
3
2
+
1
2
i
其中正確的命題的序號是
②③④
②③④
.(注:把你認為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=2cosθ+isinθ,z2=1-isinθ,其中i為虛數(shù)單位,θ∈R.
(1)當z1,z2是實系數(shù)一元二次方程x2+mx+n=0的兩個虛根時,求m、n的值.
(2)求|z1
.
z2
|的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市普陀區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市普陀區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

同步練習冊答案