【題目】現(xiàn)有甲、乙、丙三個盒子,其中每個盒子中都裝有標號分別為1、2、3、4、5、6的六張卡片,現(xiàn)從甲、乙、丙三個盒子中依次各取一張卡片使得卡片上的標號恰好成等差數(shù)列的取法數(shù)為( )
A.14B.16C.18D.20
【答案】C
【解析】
根據(jù)題意,若取出的卡片上的標號恰好成等差數(shù)列分三種情況,一是標號相等時,即所得的等差數(shù)列的公差為0,二是所得的等差數(shù)列公差為1或-1,三是所得的等差數(shù)列的公差為2或-2時,分別求出其不同的取法,再求和.
根據(jù)題意,若取出的卡片上的標號恰好成等差數(shù)列分三種情況,
一是標號相等時,即全部為1、2、3、4、5、6時,有6種取法,
二是所得的等差數(shù)列公差為1或-1,即1、2、3;3、2、1;…4、5、6;6、5、4等8種取法,
三是所得的等差數(shù)列的公差為2或-2時,即1、3、5;5、3、1;…2、4、6;6、4、2等4種取法,
所以共有種.
故選:C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:的左、右焦點分別為,,,是右支上的一點,與軸交于點,的內(nèi)切圓在邊上的切點為.若,則的離心率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有8名馬拉松比賽志愿者,其中志愿者,,通曉日語,,,通曉俄語,,通曉英語,從中選出通曉日語、俄語和英語的志愿者各1名,組成一個小組.
列出基本事件;
求被選中的概率;
求和不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時間(單位:小時)
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學(xué)生的每周平均課外閱讀時間與性別有關(guān)”.
男生 | 女生 | 總計 | |
每周平均課外閱讀時間不超過2小時 | |||
每周平均課外閱讀時間超過2小時 | |||
總計 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a∈R).
(Ⅰ)求f(x)在區(qū)間[-1,2]上的最值;
(Ⅱ)若過點P(1,4)可作曲線y=f(x)的3條切線,求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的命題是( )
A.標準差越小,則反映樣本數(shù)據(jù)的離散程度越大
B.在回歸直線方程中,當解釋變量每增加1個單位時,則預(yù)報變量減少0.4個單位
C.對分類變量與來說,它們的隨機變量的觀測值越小,“與有關(guān)系”的把握程度越大
D.在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1-(a>0且a≠1)是定義在(-∞,+∞)上的奇函數(shù).
(1)求a的值;
(2)證明:函數(shù)f(x)在定義域(-∞,+∞)內(nèi)是增函數(shù);
(3)當x∈(0,1]時,tf(x)≥2x-2恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2菱形ABCD中,,且對角線AC與BD交點為O.沿BD將折起,使點A到達點的位置.
(1)若,求證:平面ABCD;
(2)若,求三棱錐體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com