(08年荊州市質(zhì)檢二)(12分)設(shè)函數(shù)

⑴求的單調(diào)區(qū)間;

⑵若關(guān)于的方程在區(qū)間上恰有兩個相異實根,求實數(shù)的取值范圍。

解析:⑴定義域為,因為

所以,當時,

時,

的單調(diào)遞增區(qū)間是

的單調(diào)遞減區(qū)間是                                         (6分)

(注:處寫成“閉的”亦可)

⑵由得:,

,則

所以時,時,

上遞減,在上遞增                                            (8分)

要使恰有兩相異實根,則必須且只需

                                                       (12分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年荊州市質(zhì)檢二) (12分) 如圖是兩個獨立的轉(zhuǎn)盤,在兩個圖中三個扇形區(qū)域的圓心角分別為。用這兩個轉(zhuǎn)盤進行玩游戲,規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤待指針停下(當兩個轉(zhuǎn)盤中任意一個指針恰好落在分界線時,則這次轉(zhuǎn)動無效,重新開始),記轉(zhuǎn)盤指針所對的區(qū)域數(shù)為,轉(zhuǎn)盤指針所對的區(qū)域為,,設(shè)的值為,每一次游戲得到獎勵分為

⑴求的概率;

⑵某人進行了次游戲,求他平均可以得到的獎勵分

(注:這是一個幾何概率題,幾何概率的基本思想是把事件與幾何區(qū)域?qū)?yīng),利用幾何區(qū)域的度量來計算事件發(fā)生的概率,即事件的概率

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年荊州市質(zhì)檢二理)  (12分) 如圖:在三棱錐中,,是直角三角形,,,點分別為的中點。

⑴求證:

⑵求直線與平面所成的角的大。

⑶求二面角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年荊州市質(zhì)檢二理)(13分)  如圖,已知為平面上的兩個定點,為動點,,的交點)

⑴建立適當?shù)钠矫嬷苯亲鴺讼登蟪鳇c的軌跡方程;

⑵若點的軌跡上存在兩個不同的點,且線段的中垂線與(或的延長線)相交于一點,證明:的中點)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年荊州市質(zhì)檢二文)  (12分) 已知

⑴求值;

⑵求的值

查看答案和解析>>

同步練習(xí)冊答案