【題目】若定義在R上的偶函數(shù)f(x)在[0,+∞)內(nèi)是增函數(shù),且f(3)=0,則關(guān)于x的不等式xf(x)≤0的解集為(
A.{x|﹣3≤x≤0或x≥3}
B.{x|x≤﹣3或﹣3≤x≤0}
C.{x|﹣3≤x≤3}
D.{x|x≤﹣3或x≥3}

【答案】B
【解析】解:∵定義在R上的偶函數(shù)f(x)在[0,+∞)內(nèi)是增函數(shù),且f(3)=0, ∴數(shù)f(x)在(﹣∞,0)內(nèi)是減函數(shù),且f(﹣3)=0,
則關(guān)于x的不等式xf(x)≤0,即 ①,或 ②.
解①求得0≤x≤3,解②求得x≤﹣3,故原不等式的解集為{x|x≤﹣3或﹣3≤x≤0},
故選:B.
【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= 在[0, ]上是減函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時,函數(shù)的解析式為
(1)用定義證明f(x)在(0,+∞)上是減函數(shù);
(2)求當(dāng)x<0時,函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點(diǎn),且

(1)求證:不論為何值,總有平面BEF⊥平面ABC;

(2)當(dāng)λ為何值時,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 平面, , , , , 的中點(diǎn), 為棱上一點(diǎn).

(Ⅰ)當(dāng)為何值時,有平面;

(Ⅱ)在(Ⅰ)的條件下,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,設(shè)b>a≥0,若f(a)=f(b),則af(b)的取值范圍是(
A.[ ,2)
B.[﹣ ,+∞)
C.[﹣ ,﹣
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+c,當(dāng)x∈R時f(x)=f(2﹣x)恒成立,且3是f(x)的一個零點(diǎn). (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=f(ax)(a>1),若函數(shù)g(x)在區(qū)間[﹣1,1]上的最大值等于5,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動.

(1)根據(jù)以上數(shù)據(jù)建立一個列聯(lián)表;

(2)判斷性別與休閑方式是否有關(guān)系.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+2x+5,令g(x)=(2﹣2a)x﹣f(x)
(1)若函數(shù)g(x)在x∈[0,2]上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)g(x)在x∈[0,2]的最小值.

查看答案和解析>>

同步練習(xí)冊答案