已知點(diǎn)A(x12x1)、B(x2,2x2)是函數(shù)y=2x的圖象上任意不同兩點(diǎn),依據(jù)圖象可知,線段AB總是位于A、B兩點(diǎn)之間函數(shù)圖象的上方,因此有結(jié)論
2x1+2x2
2
2
x1+x2
2
成立.運(yùn)用類比思想方法可知,若點(diǎn)A(x1,sin1)、B(x2,sinx2)是函數(shù)y=sinx(x∈(0,π))的圖象上的不同兩點(diǎn),則類似地有
 
成立.
分析:根據(jù)函數(shù)y=2x的圖象可知,此函數(shù)的圖象是向下凹的,即可得到不等式
2x1+2x2
2
2
x1+x2
2
,再根據(jù)y=sinx(x∈(0,π))的圖象的特征,即可類比得到相應(yīng)的不等式.
解答:解:∵函數(shù)y=2x上任意兩點(diǎn)A(a,a3),B(b,b3)線段AB在弧線段AB的上方,
函數(shù)f(x)=x3(x>0)的圖象是向下凹的,
可得不等式
2x1+2x2
2
2
x1+x2
2
,
據(jù)此我們從y=sinx(x∈(0,π))圖象可以看出:
y=sinx(x∈(0,π))圖象是向上凸的,
故可知
sinx1+sinx2
2
<sin
x1+x2
2
,
故答案為
sinx1+sinx2
2
<sin
x1+x2
2
點(diǎn)評:本題主要考查類比推理的知識(shí)點(diǎn),還考查了數(shù)形結(jié)合思想,解答本題的關(guān)鍵是熟練掌握對數(shù)函數(shù)圖象的凸凹性,常用方法是圖象法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:黃浦區(qū)二模 題型:填空題

已知點(diǎn)A(x1,2x1)、B(x2,2x2)是函數(shù)y=2x的圖象上任意不同兩點(diǎn),依據(jù)圖象可知,線段AB總是位于A、B兩點(diǎn)之間函數(shù)圖象的上方,因此有結(jié)論
2x1+2x2
2
2
x1+x2
2
成立.運(yùn)用類比思想方法可知,若點(diǎn)A(x1,sin1)、B(x2,sinx2)是函數(shù)y=sinx(x∈(0,π))的圖象上的不同兩點(diǎn),則類似地有______成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃浦區(qū)二模 題型:填空題

已知點(diǎn)A(x1,2x1)、B(x2,2x2)是函數(shù)y=2x的圖象上任意不同兩點(diǎn),依據(jù)圖象可知,線段AB總是位于A、B兩點(diǎn)之間函數(shù)圖象的上方,因此有結(jié)論
2x1+2x2
2
2
x1+x2
2
成立.運(yùn)用類比思想方法可知,若點(diǎn)A(x1,sin1)、B(x2,sinx2)是函數(shù)y=sinx(x∈(0,π))的圖象上的不同兩點(diǎn),則類似地有______成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省福州市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知點(diǎn)是函數(shù)y=2x的圖象上任意不同兩點(diǎn),依據(jù)圖象可知,線段AB總是位于A、B兩點(diǎn)之間函數(shù)圖象的上方,因此有結(jié)論成立.運(yùn)用類比思想方法可知,若點(diǎn)A(x1,sin1)、B(x2,sinx2)是函數(shù)y=sinx(x∈(0,π))的圖象上的不同兩點(diǎn),則類似地有    成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市黃浦區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知點(diǎn)是函數(shù)y=2x的圖象上任意不同兩點(diǎn),依據(jù)圖象可知,線段AB總是位于A、B兩點(diǎn)之間函數(shù)圖象的上方,因此有結(jié)論成立.運(yùn)用類比思想方法可知,若點(diǎn)A(x1,sin1)、B(x2,sinx2)是函數(shù)y=sinx(x∈(0,π))的圖象上的不同兩點(diǎn),則類似地有    成立.

查看答案和解析>>

同步練習(xí)冊答案