【題目】高三十二班同學設(shè)計了一個如圖所示的蝴蝶形圖案(陰影區(qū)域)來預示在6月的高考中,同學們展翅高飛,其中是過拋物線的焦點的兩條弦,且,點軸上一點,記,其中為銳角.

(1)求拋物線的方程;

(2)當蝴蝶形圖案的面積最小時,求的大。

【答案】(1);(2).

【解析】

試題分析:(1)由拋物線的焦點坐標即可得到拋物線的標準方程;(2)由題意結(jié)合圖形,把、、四點的坐標分別用、、、表示,代入拋物線方程后最終求得、、,對三角形面積化簡整理,換元后利用配方法求面積的最小值.

試題解析:(1)由題意可得拋物線方程為:

(2)由拋物線焦點得,拋物線方程為;

設(shè),則點,

,即

解得:,

,

同理:

蝴蝶形圖案的面積

,

,即蝴蝶形圖案的面積最小為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點的直線兩點,過點分別作的切線,兩切線相交于點.

1)記直線的斜率分別為,,證明:為定值;

2)記的面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若函數(shù)在點處的切線的斜率為,證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,底面△是邊長為2的正三角形,,底面,點分別為,的中點.

1)求證:平面平面;

2)在線段上是否存在點,使得三棱錐體積為?若存在,確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為0),過點的直線的參數(shù)方程為t為參數(shù)),直線與曲線C相交于AB兩點.

)寫出曲線C的直角坐標方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,則直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于,兩點,且.

1)求圓的直角坐標方程,并求出圓心坐標和半徑;

2)求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年是我國打贏脫貧攻堅戰(zhàn)收官之年,為落實“精準扶貧”政策,某扶貧小組為一“對點幫扶”農(nóng)戶引種了一種新的經(jīng)濟農(nóng)作物,并指導該農(nóng)戶于2020年初開始種植.已知該經(jīng)濟農(nóng)作物每年每畝的種植成本為1000元,根據(jù)前期各方面調(diào)查發(fā)現(xiàn),該經(jīng)濟農(nóng)作物的市場價格和畝產(chǎn)量均具有隨機性,且兩者互不影響,其具體情況如下表:

該經(jīng)濟農(nóng)作物畝產(chǎn)量

900

1200

該經(jīng)濟農(nóng)作物市場價格(元)

15

20

概率

概率

1)設(shè)2020年該農(nóng)戶種植該經(jīng)濟農(nóng)作物一畝的純收入為元,求的分布列;

2)若該農(nóng)戶從2020年開始,連續(xù)三年種植該經(jīng)濟農(nóng)作物,假設(shè)三年內(nèi)各方面條件基本不變,求這三年中該農(nóng)戶種植該經(jīng)濟農(nóng)作物一畝至少有兩年的純收入不少于16000元的概率;

32020年全國脫貧標準約為人均純收入4000.假設(shè)該農(nóng)戶是一個四口之家,且該農(nóng)戶在2020年的其他方面的支出與收入正好相抵,能否憑這一畝經(jīng)濟農(nóng)作物的純收入,預測該農(nóng)戶在2020年底可以脫貧?并說明理由.

查看答案和解析>>

同步練習冊答案