已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,過F1且垂直于x軸的直線與雙曲線的左支交于A,B兩點,若△ABF2是正三角形,試求該雙曲線的離心率.
分析:利用直角三角形中含30°角所對的邊的性質(zhì)及其雙曲線的定義、勾股定理即可得到a,c的關系.
解答:解:由△ABF2是正三角形,則在Rt△AF1F2中,有∠AF2F1=30°,
|AF1|=
1
2
|AF2|
,又|AF2|-|AF1|=2a.
∴AF2=4a,AF1=2a,又F1F2=2c,
又在Rt△AF1F2中,|AF1|2+|F1F2|2=|AF2|2,得到4a2+4c2=16a2,∴
c2
a2
=3

e=
c
a
=
3
點評:熟練掌握直角三角形中含30°角所對的邊的性質(zhì)及其雙曲線的定義、勾股定理、離心率的計算公式等事件他的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,P為雙曲線左支上任一點,若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是雙曲
x2
9
-
y2
16
=1
的左、右兩個焦點,點P是雙曲線上一點,且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知F1、F2是雙曲數(shù)學公式的左、右兩個焦點,點P是雙曲線上一點,且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學 來源:2013年陜西省西安市西工大附中高考數(shù)學一模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省西安市西工大附中高考數(shù)學四模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習冊答案