設(shè)函數(shù)f (x)="2cosx" (cosx+sinx)-1,x∈R
小題1:求f (x)的最小正周期T;
小題2:求f (x)的單調(diào)遞增區(qū)間.

………… 6分
小題1:
 .                                           ………… 9分
小題2:由2kp – £ 2x +  £ 2kp + , 得:kp – £ x £ kp +  (k ÎZ),
f ( x ) 單調(diào)遞增區(qū)間是[kp – ,kp +](k ÎZ)     .     ……………… 12
同答案
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次函數(shù),已知不論為何實(shí)數(shù)恒有.
(1)求證:;
(2)求證:
(3)若函數(shù)的最大值為8,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=(x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)內(nèi)單調(diào)遞增;
(2)若a>0且f(x)在(1,+∞)內(nèi)單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a>0 且a≠1 ,f (log a x ) =  (x - )
(1)求f(x);
(2)判斷f(x)的奇偶性與單調(diào)性;
(3)對于f(x) ,當(dāng)x ∈(-1  , 1)時 , 有,求m的集合M .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



(1)若,求的單調(diào)區(qū)間;
(2)若,設(shè)在區(qū)間的最小值為,求的表達(dá)式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)上是偶函數(shù),在區(qū)間上遞增,且有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)上的最大值為3,最小值為2,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=ax3+bx2+cx+d滿足f(0)=f(x1)=f(x2)="0" (0<x1<x2),且在[x2,+∞上單調(diào)遞增,則b的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果函數(shù),且在區(qū)間(0,1)上單調(diào)遞增,并且函數(shù)的零點(diǎn)都在區(qū)間[-2,2]內(nèi),則b的一個可能取值是__________________。

查看答案和解析>>

同步練習(xí)冊答案