【題目】如圖,是正方形空地,邊長為,電源在點P處,點P到邊距離分別為.某廣告公司計劃在此空地上豎一塊長方形液晶廣告屏幕,,線段必須過點P,端點在邊上,端點在正方形的邊上,設(shè),液晶廣告屏幕的面積為

(1)用的代數(shù)式表示AM;

(2) 求關(guān)于的函數(shù)關(guān)系式;

(3)當取何值時,液晶廣告屏幕的面積最?

【答案】(1) ;(2)(3).

【解析】

(1)對應(yīng)邊成比例即可表示AM;

(2)(1)得到的結(jié)論,根據(jù)勾股定理用表示MN,再由,可以用表示NE,即能表示面積S,結(jié)合為邊長求定義域即可;

(3)根據(jù)(2),求出函數(shù)的導函數(shù),利用函數(shù)的導數(shù)求函數(shù)在給定區(qū)間上的最小值即可.

解:(1) 過點PAB的垂線,垂足于G

由題意可知:

所以

;

(2).

.

定義域為.

(3),

,得(舍),.(13分)

時,,S關(guān)于為減函數(shù);

時,,S關(guān)于為增函數(shù);

時,S取得最小值.

答:當AN長為時,液晶廣告屏幕MNEF的面積S最小.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設(shè)點的直角坐標為,直線與曲線的交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下結(jié)論:

①命題“若,則”的逆否命題為“若,則”;

②“”是“”的充分條件;

③命題“若,則方程有實根”的逆命題為真命題;

④命題“若,則”的否命題是真命題.

則其中錯誤的是__________.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)處切線方程;

2)討論函數(shù)的單調(diào)區(qū)間;

3)對任意恒成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調(diào)試,經(jīng)調(diào)試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:

項目

生產(chǎn)成本

檢驗費/次

調(diào)試費

出廠價

金額(元)

1000

100

200

3000

(Ⅰ)求每臺儀器能出廠的概率;

(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價生產(chǎn)成本檢驗費調(diào)試費);

(Ⅲ)假設(shè)每臺儀器是否合格相互獨立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標值.若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.如圖是甲流水線樣本的頻數(shù)分布表和乙流水線樣本的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計乙流水線生產(chǎn)的產(chǎn)品該質(zhì)量指標值的中位數(shù);

(2)若將頻率視為概率,某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲、乙兩條流水線分別生產(chǎn)出不合格品約多少件?

(3)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有的把握認為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩條流水線的選擇有關(guān)”?

甲流水線

乙流水線

合計

合格品

不合格品

合計

附:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,.

1)求證:平面PAD;

2)求PD與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,底面是正方形,,,分別是的中點.

(1)求證;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面, ,,,為側(cè)棱上一點.

(1)若,求證:平面;

(2)求證:平面平面

(3)在側(cè)棱上是否存在點,使得平面? 若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案