【題目】某工廠的某種產(chǎn)品成箱包裝,每箱20件,每一箱產(chǎn)品在交付用戶時(shí),用戶要對該箱中部分產(chǎn)品作檢驗(yàn).設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否合格相互獨(dú)立.

1)記某一箱20件產(chǎn)品中恰有2件不合格品的概率為,取最大值時(shí)對應(yīng)的產(chǎn)品為不合格品概率為,求

2)現(xiàn)從某一箱產(chǎn)品中抽取3件產(chǎn)品進(jìn)行檢驗(yàn),以(1)中確定的作為p的值,已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為10元,若檢驗(yàn)出不合格品,則工廠要對每件不合格品支付30元的賠償費(fèi)用,檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求的分布列和數(shù)學(xué)期望.

【答案】1;(2)分布列見解析;.

【解析】

1)根據(jù)二項(xiàng)分布概率公式可得,利用導(dǎo)數(shù)可確定單調(diào)性,從而得到最大值點(diǎn);

2)首先確定所有可能的取值和對應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望計(jì)算公式計(jì)算可得期望.

1件產(chǎn)品中恰有件不合格品的概率

,

,又,解得:,

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增,在上單調(diào)遞減,

當(dāng)時(shí),取得最大值,即.

2)由題意得:所有可能的取值為:,,,,

;

;

的分布列為:

數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一張形狀為等邊三角形的紙片,邊長為8,將它對折,使頂點(diǎn)落在邊上,當(dāng)點(diǎn)沿著從點(diǎn)到點(diǎn)移動時(shí),求折痕長的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,如圖,C1C2分別交x軸正半軸于點(diǎn)E,A.射線OD分別交C1,C2于點(diǎn)B,D,動點(diǎn)P滿足直線BPy軸垂直,直線DPx軸垂直.


1)求動點(diǎn)P的軌跡C的方程;

2)過點(diǎn)E作直線l交曲線C與點(diǎn)M,N,射線OHl與點(diǎn)H,且交曲線C于點(diǎn)Q.問:的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與函數(shù))的圖象相交,將其中三個(gè)相鄰交點(diǎn)從左到右依次記為A,B,C,且滿足有下列結(jié)論:

n的值可能為2

當(dāng),且時(shí),的圖象可能關(guān)于直線對稱

當(dāng)時(shí),有且僅有一個(gè)實(shí)數(shù)ω,使得上單調(diào)遞增;

不等式恒成立

其中所有正確結(jié)論的編號為( )

A.③B.①②C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD-A1B1C1D1中,ABCD,AB1BC,且AA1AB.求證:

1AB平面D1DCC1;

2AB1⊥平面A1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圖(a)、圖(b)是邊長為的兩塊正方形鋼板,現(xiàn)要將圖(a)裁剪焊接成一個(gè)正四棱柱,將圖(b)裁剪焊接成一個(gè)正四棱錐,使它們的全面積都等于這個(gè)正方形的面積(不計(jì)焊接縫的面積).

1)將裁剪方法用虛線標(biāo)示在圖中,并作簡要說明;

2)比較所制成的正四棱柱和正四棱錐體積大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱,,,分別為,的中點(diǎn),且

1)求證:平面;

2)求;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為圓的直徑,點(diǎn)在圓上,,矩形所在平面和圓所在平面互相垂直,已知,,

1)求證:平面平面

2)若幾何體和幾何體的體積分別為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線D的極坐標(biāo)方程為.

1)寫出曲線C的極坐標(biāo)方程以及曲線D的直角坐標(biāo)方程;

2)若過點(diǎn)(極坐標(biāo))且傾斜角為的直線l與曲線C交于MN兩點(diǎn),弦MN的中點(diǎn)為P,求的值.

查看答案和解析>>

同步練習(xí)冊答案