與普通方程x2+y-1=0等價(jià)的參數(shù)方程是
A.(θ為參數(shù))B.(t為參數(shù))
C.(t為參數(shù))D.(φ為參數(shù))
D

試題分析:選項(xiàng)A中,由于普通方程x2+y-1=0中x可以取得一切實(shí)數(shù),因此可知A中x大于等于-1,小于等于1,故錯(cuò)誤。
選項(xiàng)B中,同理可知結(jié)合正弦函數(shù)的有界性可知x不是取得一切實(shí)數(shù),錯(cuò)誤
選項(xiàng)C中,由于偶次根式的定義可知,x0不可取得一切實(shí)數(shù),不成立。
選項(xiàng)D中,結(jié)合正切函數(shù)圖像可知,滿足題意故成立。選D
點(diǎn)評(píng):解決該試題的關(guān)鍵是注意到不同參數(shù)中變量的限定范圍,以及消去參數(shù)的思想的得到普通方程的一般思路。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線經(jīng)過點(diǎn),傾斜角是
①求直線的參數(shù)方程
②求直線與直線的交點(diǎn)與點(diǎn)的距離
③在圓上找一點(diǎn)使點(diǎn)到直線的距離最小,并求其最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為:(t為參數(shù)),曲線C的極坐標(biāo)方程為:
(1)求曲線C的普通方程;
(2)求直線被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( 本小題滿分12分)如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)上,點(diǎn)上,且滿足的軌跡為曲線

求曲線的方程;
若過定點(diǎn)F(0,2)的直線交曲線于不同的兩點(diǎn)(點(diǎn)在點(diǎn)之間),且滿足,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系軸的正半軸重合.直線的參數(shù)方程是為參數(shù)),曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程;(Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)直線與圓相交的弦長(zhǎng)為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

極坐標(biāo)系中,曲線相交于點(diǎn),則線段的長(zhǎng)度為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知O為原點(diǎn),參數(shù)方程為參數(shù))上的任意一點(diǎn)為A,則=(     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ) 以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位已知直線的極坐標(biāo)方程為,它與曲線為參數(shù))相交于兩點(diǎn)A和B, 求|AB|;
(Ⅱ)已知極點(diǎn)與原點(diǎn)重合,極軸與x軸正半軸重合,若直線C1的極坐標(biāo)方程為:,曲線C2的參數(shù)方程為:為參數(shù)),試求曲線C2關(guān)于直線C1對(duì)稱的曲線的直角坐標(biāo)方程

查看答案和解析>>

同步練習(xí)冊(cè)答案