10.已知關(guān)于θ的方程$\sqrt{3}sinθ+cosθ+a=0$在區(qū)間(0,2π)上有兩個不相等的實數(shù)根α、β,則sin(α+β)=$\frac{{\sqrt{3}}}{2}$.

分析 由題意變形可得a=-2sin(α+$\frac{π}{6}$)=-2sin(β+$\frac{π}{6}$),利用正弦函數(shù)的圖象和性質(zhì)可求對稱軸,進而可求α+β的值,即可得解.

解答 解:∵$\sqrt{3}$sinθ+cosθ+a=0,
∴a=-($\sqrt{3}$sinθ+cosθ)=-2sin(θ+$\frac{π}{6}$),
由題意可得a=-2sin(α+$\frac{π}{6}$)=-2sin(β+$\frac{π}{6}$),
∴α,β關(guān)于$\frac{π}{3}$或$\frac{4π}{3}$對稱,
∴α+β=$\frac{2π}{3}$或$\frac{8π}{3}$,
∴sin(α+β)=$\frac{{\sqrt{3}}}{2}$.
故答案為:$\frac{{\sqrt{3}}}{2}$.

點評 本題考查兩角和與差的三角函數(shù)公式,正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,考查了數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=cos($\frac{2π}{3}$x)+(a-1)sin($\frac{π}{3}$x)+a,g(x)=2x-x2,若f[g(x)]≤0對x∈[0,1]恒成立,則實數(shù)a的取值范圍是( 。▍⒖脊剑篶os(2α)=cos2α-sin2α=2cos2α-1=1-2sin2α)
A.(-∞,$\sqrt{3}$-1]B.(-∞,0]C.[0,$\sqrt{3}$-1]D.(-∞,1-$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.P為雙曲線2x2-y2=2右支上一點,F(xiàn)1,F(xiàn)2分別為左右焦點,I為△PF1F2的內(nèi)心,若S${\;}_{△P{F}_{1}{F}_{2}}$=2S${\;}_{△IP{F}_{2}}$+(1+$\frac{1}{λ}$)S${\;}_{△I{F}_{1}{F}_{2}}$,則實數(shù)λ的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若p=$\sqrt{a+2}$+$\sqrt{a+5}$,q=$\sqrt{a+3}$+$\sqrt{a+4}$,a≥0,則p、q的大小關(guān)系是(  )
A.p<qB.p>qC.p=qD.由a的取值確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin300°+tan600°的值是  ( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$+$\sqrt{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.空間中兩點A(1,0,1),B(2,1,-1),則|AB|的值為( 。
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果復(fù)數(shù)$\overline{z}=\frac{2}{-1+i}$,則( 。
A.|z|=2B.z的實部為1
C.z的虛部為-1D.z的共軛復(fù)數(shù)為-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖,則該幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知P(1,1)為橢圓2x2+y2=4內(nèi)一定點,過P引一條弦,使此弦以P為中點,則弦所在的直線方程2x+y-3=0.

查看答案和解析>>

同步練習(xí)冊答案