【題目】要得到函數(shù)f(x)=2sinxcosx,x∈R的圖象,只需將函數(shù)g(x)=2cos2x﹣1,x∈R的圖象(
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

【答案】D
【解析】解:將函數(shù)g(x)=2cos2x﹣1=cos2x,x∈R的圖象向右平移 個(gè)單位,可得函數(shù)y=cos2(x﹣ )=sin2x=2sinxcosx,x∈R的圖象,
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義在R上的函數(shù)對(duì)任意的、,都有成立,且當(dāng)時(shí),.

(1)求證:R上的增函數(shù);

(2)若,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=3,AC=5,cosA= ,點(diǎn)P在平面ABC內(nèi),且 =﹣4,則| + +2 |的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)A,B以及CD的中點(diǎn)P處,已知AB=20kmCB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長(zhǎng)為km

(I)設(shè),將表示成的函數(shù)關(guān)系式;

(II)確定污水處理廠的位置,使三條排污管道的總長(zhǎng)度最短,并求出最短值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域?yàn)镽的奇函數(shù)f(x)滿足f(4﹣x)+f(x)=0,當(dāng)﹣2<x<0時(shí),f(x)=2x , 則f(log220)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x=1是 的一個(gè)極值點(diǎn).
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù) ,若函數(shù)g(x)在區(qū)間[1,2]內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=,g(x)=,若函數(shù)y=f(g(x))+a有三個(gè)不同的零點(diǎn)x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______

【答案】

【解析】

首先研究函數(shù)和函數(shù)的性質(zhì),然后結(jié)合韋達(dá)定理和函數(shù)的性質(zhì)求解2gx1)+gx2)+gx3)的取值范圍即可.

由題意可知:,

將對(duì)勾函數(shù)的圖象向右平移一個(gè)單位,再向上平移一個(gè)單位即可得到函數(shù)的圖象,其圖象如圖所示:

可得,

據(jù)此可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

繪制函數(shù)圖象如圖所示:

的最大值為,,

函數(shù)yfgx))+a有三個(gè)不同的零點(diǎn),則

,則

整理可得:,由韋達(dá)定理有:.

滿足題意時(shí),應(yīng)有:,

.

【點(diǎn)睛】

本題主要考查導(dǎo)數(shù)研究函數(shù)的性質(zhì),等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,復(fù)合函數(shù)的性質(zhì)及其應(yīng)用等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.

型】填空
結(jié)束】
17

【題目】已知等比數(shù)列{}的前n項(xiàng)和為,且滿足2+m(m∈R).

(Ⅰ)求數(shù)列{}的通項(xiàng)公式;

(Ⅱ)若數(shù)列{}滿足,求數(shù)列{}的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:

時(shí)間

星期一

星期二

星期三

星期四

星期五

星期六

星期日

車流量(萬(wàn)輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)求關(guān)于的線性回歸方程;(提示數(shù)據(jù):

(2)(I)利用(1)所求的回歸方程,預(yù)測(cè)該市車流量為12萬(wàn)輛時(shí)的濃度;(II)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量不超過(guò)多少萬(wàn)輛?(結(jié)果以萬(wàn)輛為單位,保留整數(shù))參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,sin2A+sin2B+sin2C=2 sinAsinBsinC,且a=2,則△ABC的外接圓半徑R=

查看答案和解析>>

同步練習(xí)冊(cè)答案