(滿分12分)在銳角△ABC中,已知內(nèi)角A、B、C所對的邊分別為a、b、c,且(tanA-tanB)=1+tanA·tanB.
(1)若a2-ab=c2-b2,求A、B、C的大小;
(2)已知向量=(sinA,cosA),=(cosB,sinB),求|3-2|的取值范圍.
(1)A=5π /12 ,B=π /4 . C=π/ 3;(2)1≤|3m-2n|< 7 .
【解析】本試題主要是考查了解三角形中余弦定理的運(yùn)用,以及兩角差的正切公式的運(yùn)用,以及向量的數(shù)量積綜合運(yùn)用問題,三角函數(shù)的性質(zhì)等等知識點的交匯處命題。
(1)先將已知的正切關(guān)系式化簡,再利用余弦定理得到角A,B,C的值
(2)因為向量的模的平方就是向量的平方,那么可知,結(jié)合角的范圍可知得到三角函數(shù)的值域。
解:因為 3 (tanA-tanB)=1+tanA•tanB,
所以tan(A-B)=(tanA-tanB) /(1+tanA•tanB) = ,
∴A-B=π/ 6 .…(2分)
(1)因為a2+b2-2abcosC=c2,所以cosC=1/ 2 ,∴C=π/ 3 ,…(4分)
A+B=2π/ 3 ,又A-B=π/ 6 ,
∴A=5π /12 ,B=π /4 .…(6分)
(2)因為向量 m =(sinA,cosA), n =(cosB,sinB),
∴|3 m -2 n |2=13-12 m • n =13-12sin(A+B)=13-12sin(2A-π 6 )…(8分) 0<A<π 2 0<B<π/ 2 0<C<π/ 2 ⇒ 0<A<π /2 0<A-π /6 <π /2 0<π-2A+π/ 6 <π/ 2 ⇒π/ 6 <A<π/ 2 .…(10分)
π /6 <2A-π /6 <5π/ 6 ,6<12sina(2A-π /6 )≤12,
1≤|3m-2n|< 7 .…(12分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北唐山市高三年級第一學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
在銳角中,分別為角的對邊,且.
(1)求角A的大;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
在銳角中,分別是內(nèi)角所對的邊,且.
(1)求角的大小;
(2)若,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)在銳角中,角所對邊分別為,已知.
(Ⅰ)求的值;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011吉林一中高一下學(xué)期期末數(shù)學(xué) 題型:解答題
(本小題滿分12分)在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,
且。
(Ⅰ)確定角C的大。
(Ⅱ)若c=,且△ABC的面積為,求a+b的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com