【題目】通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問(wèn)題所用的時(shí)間,講座開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力(的值越大,表示接受能力越強(qiáng)),表示提出和講授概念的時(shí)間(單位:分),可以有以下公式: .
(1)開(kāi)講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開(kāi)講5分鐘與開(kāi)講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?
【答案】(1)能維持6分鐘時(shí)間(2)開(kāi)講5分鐘時(shí)學(xué)生的接受能力比開(kāi)講20分鐘時(shí)要強(qiáng)一些(3)來(lái)不及
【解析】試題分析:(1)當(dāng)時(shí),函數(shù)為二次函數(shù),對(duì)稱軸為,開(kāi)口向下故在這個(gè)區(qū)間上單調(diào)遞增,當(dāng)時(shí)取得最大值為.當(dāng)時(shí),函數(shù)為減函數(shù),且,故開(kāi)講分鐘后達(dá)到最大值,維持分鐘.(2)通過(guò)比較的值可知開(kāi)講分鐘時(shí)接受能力更強(qiáng).(3)在區(qū)間上分別令函數(shù)值為,求得對(duì)應(yīng)的時(shí)間,作差后可知老師來(lái)不及講授完.
試題解析:
(1)當(dāng)時(shí),
故在時(shí)遞增,最大值為
當(dāng)時(shí),
當(dāng)時(shí), 為減函數(shù),且
因此,開(kāi)講10分鐘后,學(xué)生達(dá)到最強(qiáng)接受能力(為59),能維持6分鐘時(shí)間.
(2)
故開(kāi)講5分鐘時(shí)學(xué)生的接受能力比開(kāi)講20分鐘時(shí)要強(qiáng)一些
(3)當(dāng)時(shí),令,解得或20(舍)
當(dāng)時(shí),令,解得
因此學(xué)生達(dá)到(含超過(guò))55的接受能力的時(shí)間為(分)
老師來(lái)不及在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2-ax+ln(x+1)(a∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值點(diǎn);
(2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實(shí)數(shù)a的取值范圍;
(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),證明數(shù)列{cn}是單調(diào)遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=x2+ax+b(a,b∈R)的定義域?yàn)閇-1,1],且|f(x)|的最大值為M.
(1)證明:|1+b|≤M;
(2)證明:M≥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知垂直于以為直徑的圓所在平面,點(diǎn)在線段上,點(diǎn)為圓上一點(diǎn),且
(Ⅰ) 求證:
(Ⅱ) 求二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.
參考數(shù)據(jù): , , , .
參考公式:相關(guān)系數(shù)
回歸方程中, , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的上、下頂點(diǎn)分別為, ,右焦點(diǎn)為,點(diǎn)在橢圓上,且.
(1)若點(diǎn)坐標(biāo)為,求橢圓的方程;
(2)延長(zhǎng)交橢圓與點(diǎn),若直線的斜率是直線的斜率的3倍,求橢圓的離心率;
(3)是否存在橢圓,使直線平分線段?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(, )為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com