已知函數(shù)f(x)=x2+bx+c(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當x≥0時,f(x)≤(x+c)2;
(2)若對滿足題設條件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
(1)見解析(2)
【解析】(1)易知f′(x)=2x+b.由題設,對任意的x∈R,2x+b≤x2+bx+c,即x2+(b-2)x+c-b≥0恒成立,所以(b-2)2-4(c-b)≤0,從而c≥+1.于是c≥1,
且c≥2 =|b|,因此2c-b=c+(c-b)>0.
故當x≥0時,有(x+c)2-f(x)=(2c-b)x+c(c-1)≥0.即當x≥0時,f(x)≤(x+c)2.
(2)由(1)知c≥|b|.當c>|b|時,有
M≥
令t=,則-1<t<1,=2-.
而函數(shù)g(t)=2- (-1<t<1)的值域是.
因此,當c>|b|時,M的取值集合為.
當c=|b|時,由(1)知b=±2,c=2.此時f(c)-f(b)=-8或0,c2-b2=0,從而f(c)-f(b)≤ (c2-b2)恒成立.
綜上所述,M的最小值為.
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用階段檢測1練習卷(解析版) 題型:填空題
若0<a<b<1<c,m=logac,n=logbc,r=ac, 則m,n,r的大小關系是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用6練習卷(解析版) 題型:填空題
已知函數(shù)f(x)=3sin(ωx-)(ω>0)和g(x)=3cos(2x+φ)的圖象的對稱中心完全相同,若x∈,則f(x)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用5練習卷(解析版) 題型:填空題
若函數(shù)y=-x3+bx有三個單調區(qū)間,則b的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用4練習卷(解析版) 題型:填空題
已知a,b為正實數(shù),函數(shù)f(x)=ax3+bx+2x在[0,1]上的最大值為4,則f(x)在[-1,0]上的最小值為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用3練習卷(解析版) 題型:填空題
已知圓心角為120°的扇形AOB的半徑為1,C為的中點,點D,E分別在半徑OA,OB上.若CD2+CE2+DE2=,則OD+OE的最大值是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用2練習卷(解析版) 題型:解答題
如圖,在C城周邊已有兩條公路l1,l2在點O處交匯.已知OC=(+)km,∠AOB=75°,∠AOC=45°,現(xiàn)規(guī)劃在公路l1,l2上分別選擇A,B兩處為交匯點(異于點O)直接修建一條公路通過C城.設OA=x km,OB=y km.
(1)求y關于x的函數(shù)關系式并指出它的定義域;
(2)試確定點A,B的位置,使△OAB的面積最小.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用21練習卷(解析版) 題型:填空題
在集合A={2,3}中隨機取一個元素m,在集合B={1,2,3}中隨機取一個元素n,得到點P(m,n),則點P在圓x2+y2=9內部的概率為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用18練習卷(解析版) 題型:解答題
對于定義域為A的函數(shù)f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴格增函數(shù),并且滿足條件f(f(k))=3k.
(1)證明:f(3k)=3f(k);
(2)求f(3k-1)(k∈N*)的值;
(3)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com