【題目】為了進一步激發(fā)同學們的學習熱情,某班級建立了數(shù)學英語兩個學習興趣小組,兩組的人數(shù)如下表所示:
組別 性別 | 數(shù)學 | 英語 |
男 | 5 | 1 |
女 | 3 | 3 |
現(xiàn)采用分層抽樣的方法(層內采用簡單隨機抽樣)從兩組中共抽取3名同學進行測試.
(1)求從數(shù)學組抽取的同學中至少有1名女同學的概率;
(2)記ξ為抽取的3名同學中男同學的人數(shù),求隨機變量ξ的分布列和數(shù)學期望.
【答案】(1).(2)分布列答案見解析,數(shù)學期望
【解析】
(1)兩小組的總人數(shù)之比為8∶4,確定分層抽樣的比值,即數(shù)學組抽取2人,英語組抽取1人.數(shù)學組至少有1名女同學的情況有:1名男同學1名女同學和2名女同學兩種情況.利用古典概型的概率計算公式即可得出結果.
(2)由題意可知,ξ的所有可能取值為0,1,2,3,根據題意可知需滿足數(shù)學組抽取2人,英語組抽取1人,根據男生的人數(shù)進行分類討論即可求得對應的概率,進而得出結果.
(1)兩小組的總人數(shù)之比為8∶4=2∶1,共抽取3人,
所以數(shù)學組抽取2人,英語組抽取1人.
從數(shù)學組抽取的同學中至少有1名女同學的情況有:1名男同學1名女同學和2名女同學兩種情況.
所以所求概率.
(2)由題意可知,ξ的所有可能取值為0,1,2,3
分布列為:
0 | 1 | 2 | 3 | |
科目:高中數(shù)學 來源: 題型:
【題目】隨著經濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額,依照個人所得稅稅率表,調整前后的計算方法如下表:
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應納的稅,試寫出調整前后關于的函數(shù)表達式;
(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
先從收入在及的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調整后小紅的實際收入比調整前增加了多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面上有奇數(shù)條線段,甲乙兩人做如下游戲:兩人輪流(甲先乙后)給任一條尚未設定方向的線段設定一個方向,直至某次(甲)設定后,所有線段各有了一個方向為止.如果最后得到的所有向量之和的模長不小于原來每條線段長,則甲獲勝,否則乙獲勝.問:誰有必勝策略?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩支圍棋隊各5名隊員按事先排好的順序進行擂臺賽,雙方1號隊員先賽,負者被淘汰;然后負方的2號隊員再與對方的勝者比賽,負者又被淘汰.依次類推,直到有一方隊員全部被淘汰,則宣布另一方獲勝.假設每名隊員的實力相當,則比賽結束時甲隊未上場隊員數(shù)的數(shù)學期望______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護知識,某校開展了“疫情防護”網絡知識競賽活動.現(xiàn)從參加該活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計這100名學生的平均成績(同一組中的數(shù)據用該組區(qū)間的中點值為代表);
(2)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99%的把握認為“比賽成績是否優(yōu)秀與性別有關”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求最小的正整數(shù),使得存在一個的數(shù)陣滿足如下條件: (1)每一個數(shù)均屬于集合; (2)記為數(shù)陣中第行中的數(shù)組成的集合, 為第列中的數(shù)組成的集合,則,是4026個不同的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次籃球投籃測試中,記分規(guī)則如下(滿分為分):①每人可投籃次,每投中一次記分;②若連續(xù)兩次投中加分,連續(xù)三次投中加分,連續(xù)四次投中加分,以此類推,…,七次都投中加分.假設某同學每次投中的概率為,各次投籃相互獨立,則:(1)該同學在測試中得分的概率為______;(2)該同學在測試中得分的概率為______..
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com