設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,記bn=
4+an
1-an
(n∈N*)

(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)記cn=b2n-b2n-1(n∈N*),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對(duì)任意正整數(shù)n都有Tn
3
2
;

(Ⅲ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn.已知正實(shí)數(shù)λ滿足:對(duì)任意正整數(shù)nRn≤λn恒成立,求λ的最小值.
分析:(Ⅰ)由題設(shè)條件能導(dǎo)出an+1-an=5an+1,即an+1=-
1
4
an
,所以an=(-
1
4
)n
,∴bn=
4+(-
1
4
)
n
1-(-
1
4
)
n

(Ⅱ)由bn=4+
5
(-4)n-1
,知cn=b2n-b2n-1=
5
42n-1
+
5
42n-1+1
=
25×16n
(16n-1)(16n+4)
=
25×16n
(16n)2+3×16n-4
25×16n
(16n)2
=
25
16n
,當(dāng)n=1時(shí),T1
3
2
;當(dāng)n≥2時(shí),Tn
4
3
+25×(
1
162
+
1
163
+…+
1
16n
)

4
3
+25×
1
162
1-
1
16
=
69
48
3
2

(Ⅲ)由bn=4+
5
(-4)n-1
知Rn=b1+b2+…+b2k+1=4n+5×(-
1
41+1
+
1
42-1
-
1
43+1
+…-
1
42k+1+1
)
=4n+5×[-
1
41+1
+(
1
42-1
-
1
43+1
)+…+(
1
42k-1
-
1
42k+1+1
)]
>4n-1.由此入手能推導(dǎo)出正實(shí)數(shù)λ的最小值為4.
解答:解:(Ⅰ)當(dāng)n=1時(shí),a1=5a1+1,∴a1=-
1
4

又∵an=5Sn+1,an+1=5Sn+1+1
∴an+1-an=5an+1,即an+1=-
1
4
an

∴數(shù)列an成等比數(shù)列,其首項(xiàng)a1=-
1
4
,公比是q=-
1
4

an=(-
1
4
)n

bn=
4+(-
1
4
)
n
1-(-
1
4
)
n

(Ⅱ)由(Ⅰ)知bn=4+
5
(-4)n-1

cn=b2n-b2n-1=
5
42n-1
+
5
42n-1+1
=
25×16n
(16n-1)(16n+4)

=
25×16n
(16n)2+3×16n-4
25×16n
(16n)2
=
25
16n

b1=3,b2=
13
3
,∴c1=
4
3

當(dāng)n=1時(shí),T1
3
2

當(dāng)n≥2時(shí),Tn
4
3
+25×(
1
162
+
1
163
+…+
1
16n
)

=
4
3
+25×
1
162
[1-(
1
16
)
n-1
]
1-
1
16

4
3
+25×
1
162
1-
1
16
=
69
48
3
2
,故所證結(jié)論成立

(Ⅲ)由(Ⅰ)知bn=4+
5
(-4)n-1

一方面,已知Rn≤λn恒成立,取n為大于1的奇數(shù)時(shí),設(shè)n=2k+1(k∈N+
則Rn=b1+b2+…+b2k+1
=4n+5×(-
1
41+1
+
1
42-1
-
1
43+1
+…-
1
42k+1+1
)

=4n+5×[-
1
41+1
+(
1
42-1
-
1
43+1
)+…+(
1
42k-1
-
1
42k+1+1
)]

>4n-1
∴λn≥Rn>4n-1,即(λ-4)n>-1對(duì)一切大于1的奇數(shù)n恒成立
∴λ≥4否則,(λ-4)n>-1只對(duì)滿足n<
1
4-λ
的正奇數(shù)n成立,矛盾.
另一方面,當(dāng)λ=4時(shí),對(duì)一切的正整數(shù)n都有Rn≤4n
事實(shí)上,對(duì)任意的正整數(shù)k,有
b2n-1+b2n=8+
5
(-4)2k+1-1
+
5
(-4)2k-1

=8+
5
(16)k-1
-
20
(16)k+4

=8-
15×16k-40
(16k-1)(16k+4)
<8

∴當(dāng)n為偶數(shù)時(shí),設(shè)n=2m(m∈N+
則Rn=(b1+b2)+(b3+b4)+…+(b2n-1+b2n
<8m=4nw、w、w、k、s、5、u、c、o、m
當(dāng)n為奇數(shù)時(shí),設(shè)n=2m-1(m∈N+
則Rn=(b1+b2)+(b3+b4)+…+(b2n-3+b2n-2)+b2n-1
<8(m-1)+4=8m-4=4n
∴對(duì)一切的正整數(shù)n,都有Rn≤4n
綜上所述,正實(shí)數(shù)λ的最小值為4
點(diǎn)評(píng):本題主要考查數(shù)列、不等式等基礎(chǔ)知識(shí)、考查化歸思想、分類整合思想,以及推理論證、分析與解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過(guò)程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案