【題目】已知函數(shù)的極小值為.
(1)求實數(shù)k的值;
(2)令,當時,求證:.
【答案】(1);(2)證明見解析.
【解析】
(1)求出導數(shù),研究函數(shù)的單調(diào)性,得極值,由極小值為求得值;
(2)由(1)得,令,同樣由(1)可得的單調(diào)性(導數(shù)利用(1)中結(jié)論),這樣得到關(guān)于u的不等式的解集應(yīng)是單調(diào)遞增區(qū)間的子集,而,從而,接著要證題中不等式,可先證,這又可設(shè),,換元后同樣由導數(shù)研究函數(shù)的單調(diào)性最值,證得不等式成立.
(1)顯然,,由題意得:
令得:
若,則當時,;
當時,,此時為極小值點,合題意.
由得:.
若,顯然不合題意.
所以.
(2)由題意得:,令
由(1)易知在單調(diào)遞減,且;在單調(diào)遞增
故關(guān)于u的不等式:的解集應(yīng)是單調(diào)遞增區(qū)間的子集
又,從而
令
.
令,則
所以
顯然當時,;當時,
從而在單調(diào)遞增,在單調(diào)遞減
所以
又,所以,從而
于是,即
又
故.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線: 與橢圓有且只有一個公共點.
(Ⅰ)求橢圓的方程及點的坐標;
(Ⅱ)設(shè)是坐標原點,直線平行于,與橢圓交于不同的兩點、,且與直線交于點,證明:存在常數(shù),使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前項和為,等比數(shù)列的前項和為,且
(1)設(shè),求數(shù)列的通項公式;
(2)在(1)的條件下,且,求滿足的所有正整數(shù);
(3)若存在正整數(shù),且,試比較與的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,AC與BD交于點O,PO⊥平面ABCD,E為CD的中點連接AE交BD于G,點F在側(cè)棱PD上,且DFPD.
(1)求證:PB∥平面AEF;
(2)若,求三棱錐E﹣PAD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:函數(shù)f(x)=2lnx﹣ax2+3x,其中a∈R.
(1)若f(1)=2,求函數(shù)f(x)的最大值;
(2)若a=﹣1,正實數(shù)x1,x2滿足f(x1)+f(x2)=0,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的菱形,, 平面,,,為的中點.
(1)求證:;
(2)求異面直線與所成角的余弦值;
(3)判斷直線與平面的位置關(guān)系,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)若在處的切線與直線垂直,求的值;
(2)若,討論函數(shù)的單調(diào)性;
(3)若為正整數(shù),函數(shù)恰好有兩個零點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中a為常數(shù),e是自然對數(shù)的底數(shù),曲線在其與y軸的交點處的切線記作,曲線在其與x軸的交點處的切線記作,且.
(1)求之間的距離;
(2)若存在x使不等式成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線(),其準線方程,直線過點(),且與拋物線交于、兩點,為坐標原點.
(1)求拋物線方程,并注明:的值與直線傾斜角的大小無關(guān);
(2)若為拋物線上的動點,記的最小值為函數(shù),求的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com