某班有52人,男女各半,男女各自平均分成兩組,從這個(gè)班中選出4人參加某項(xiàng)活動(dòng),這4人恰好來(lái)自不同組別的概率是_________.
因?yàn)槊拷M人數(shù)為13,因此,每組選1人有C種方法,所以所求概率為P=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

同時(shí)擲3枚硬幣,那么下面兩個(gè)事件中是對(duì)立事件的是 (     )
A.至少有1枚正面和最多有1枚正面
B.最多1枚正面和恰好2枚正面
C.不多于1枚正面和至少有2枚正面
D.至少有2枚正面和恰好有1枚正面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)將一個(gè)各面上均涂有紅色的正方體鋸成27個(gè)同樣大小的小正方體,
(1)從這些小正方體中任取一個(gè),求其中至少有兩個(gè)面涂有紅色的概率;
(2)從中任取2個(gè)小正方體,記2個(gè)小正方體涂有紅色的面數(shù)和為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校高一年級(jí)共有320人,為調(diào)查高一年級(jí)學(xué)生每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間(指除了完成老師布置的作業(yè)后學(xué)生根據(jù)自己的需要進(jìn)行學(xué)習(xí)的時(shí)間)情況,學(xué)校采用隨機(jī)抽樣的方法從高一學(xué)生中抽取了n名學(xué)生進(jìn)行問(wèn)卷調(diào)查.根據(jù)問(wèn)卷得到了這n名學(xué)生每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間的數(shù)據(jù)(單位:分鐘),按照以下區(qū)間分為七組:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到頻率分布直方圖如圖.已知抽取的學(xué)生中每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間低于20分鐘的人數(shù)是4人.
(1)求n的值;
(2)若高一全體學(xué)生平均每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間少于45分鐘,則學(xué)校需要減少作業(yè)量.根據(jù)以上抽樣調(diào)查數(shù)據(jù),學(xué)校是否需要減少作業(yè)量?
(注:統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表)
(3)問(wèn)卷調(diào)查完成后,學(xué)校從第3組和第4組學(xué)生中利用分層抽樣的方法抽取7名學(xué)生進(jìn)行座談,了解各學(xué)科的作業(yè)布置情況,并從這7人中隨機(jī)抽取兩名學(xué)生聘為學(xué)情調(diào)查聯(lián)系人。求第3組中至少有1名學(xué)生被聘為學(xué)情調(diào)查聯(lián)系人的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

從含有4個(gè)元素的集合的所有子集中任取一個(gè),所取的子集是含有2個(gè)元素的集合的概率是(  )
A.  B.   C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

甲、乙兩人做“石頭、剪刀、布”游戲,兩人平局的概率為                                
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

要從4名女生和2名男生中選出3名學(xué)生組成課外學(xué)習(xí)小組,則是按分層抽樣組成的課外學(xué)習(xí)小組的概率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

制造一種產(chǎn)品需要經(jīng)過(guò)三道相互獨(dú)立的工序,第一道工序出一級(jí)品的概率為,第二道工序出一級(jí)品的概率為,第三道工序出一級(jí)品的概率,則這種產(chǎn)品出一級(jí)品的概率是       (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從裝有5只紅球、5只白球的袋中任意取出3只球,有事件:①.“取出2只紅球和1只白球”與“取出1只紅球和2只白球”;②.“取出2只紅球和1只白球”與“取出3只紅球”;③.“取出3只紅球”與“取出3只球中至少有1只白球”;④.“取出3只紅球”與“取出3只白球”.其中是對(duì)立事件的有......

查看答案和解析>>

同步練習(xí)冊(cè)答案