已知平面α截一球面得圓M,過圓心M且與α成二面角的平面β截該球面得圓N.若該球面的半徑為4,圓M的面積為4,則圓N的面積為(   )
A.7B.9C.11D.13
D
考點(diǎn):
分析:先求出圓M的半徑,然后根據(jù)勾股定理求出求出OM的長(zhǎng),找出二面角的平面角,從而求出ON的長(zhǎng),最后利用垂徑定理即可求出圓N的半徑,從而求出面積.
解答:解:∵圓M的面積為4π
∴圓M的半徑為2
根據(jù)勾股定理可知OM=2                                     
∵過圓心M且與α成60°二面角的平面β截該球面得圓N
∴∠OMN=30°,在直角三角形OMN中,ON=
∴圓N的半徑為
則圓的面積為13π
故選D
點(diǎn)評(píng):本題主要考查了二面角的平面角,以及解三角形知識(shí),同時(shí)考查空間想象能力,分析問題解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

經(jīng)過點(diǎn)P(5,1),圓心為C(8,-3)的圓的方程為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,以為圓心的圓與直線相切。圓與x軸相交于A,B兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)P使成等比數(shù)列,
(1)求圓的方程;
(2)求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與圓的位置關(guān)系是(    )
A.內(nèi)含 B.內(nèi)切 C.相交D.外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知圓為圓心,為半徑,過點(diǎn)作直線與圓交于不同兩點(diǎn)
(Ⅰ)若求直線的方程;
(Ⅱ)當(dāng)直線的斜率為時(shí),過直線上一點(diǎn)作圓的切線為切點(diǎn)使求點(diǎn)的坐標(biāo);
(Ⅲ)設(shè)的中點(diǎn)為試在平面上找一點(diǎn),使的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓的外接圓,過點(diǎn)的切線交的延長(zhǎng)線于點(diǎn),
,則的長(zhǎng)為            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)作直線與圓交于兩點(diǎn),若,則直線的方程為               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點(diǎn)在直線上,過點(diǎn)的直線與曲線只有一個(gè)公共點(diǎn),則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本題5分)已知圓心是直線為參數(shù))與軸的交點(diǎn),且與直線相切的圓C的極坐標(biāo)方程是,則     。

查看答案和解析>>

同步練習(xí)冊(cè)答案