【題目】把函數(shù)y=sinx(x∈R)的圖象上所有的點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再把所得圖象向左平行移動 個單位長度,得到的圖象所表示的函數(shù)是(
A.y=sin( x+ ),x∈R
B.y=sin( x+ ),x∈R
C.y=sin(2x+ ),x∈R
D.y=sin(2x+ ),x∈R

【答案】C
【解析】解:把函數(shù)y=sinx(x∈R)的圖象上所有的點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變), 可得y=sin2x(x∈R)的圖象.
再把所得圖象向左平行移動 個單位長度,得到的圖象所表示的函數(shù)為y=sin2(x+ )=sin(2x+ ),x∈R,
故選:C.
由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計

1

(1)求出表中及圖中的值;

(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2﹣8x+15=0,若直線y=kx﹣2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間幾何體A﹣BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是邊長為2的等邊三角形,F(xiàn)為AC的中點. (Ⅰ)求證:BF∥平面ADE;
(Ⅱ)若AC=4,求證:平面ADE⊥平面BCDE;
(Ⅲ)若AC=4,求幾何體C﹣BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為(
A.①②
B.③④
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如下表(單位:輛):

轎車

轎車

轎車

舒適型

100

150

標(biāo)準(zhǔn)型

300

450

600

按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.

(I)求的值;

(II)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;

(III)用隨機(jī)抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個總體,從中任取一個數(shù),設(shè)樣本平均數(shù)為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為 ,且a1與a5的等差中項為18.
(1)求{an}的通項公式;
(2)若an=2log2bn , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.

方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的偶函數(shù),在[0,+∞)上單調(diào)遞增.若a=f(log ),b=f(log ),c=f(﹣2),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>c>a
C.c>b>a
D.c>a>b

查看答案和解析>>

同步練習(xí)冊答案