在復(fù)平面上,復(fù)數(shù)是虛數(shù)單位)對應(yīng)的點位于第    象限.
【答案】分析:化簡復(fù)數(shù),使它的分母為實數(shù),整理為a+bi(a、b∈R)即可.
解答:解:復(fù)數(shù)
復(fù)數(shù)對應(yīng)的點位于第二象限.
故答案為:二.
點評:本題考查復(fù)數(shù)代數(shù)形式的混合運算,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2,求實數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)a∈ (
3
2
 , 3)
),當n為奇數(shù)時,動點P(x、y)的軌跡為C1.當n為偶數(shù)時,動點P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點D(2,
2
)
,求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點A,使點A與點B(x0,0)(x0>0)的最小距離不小于
2
3
3
,求實數(shù)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

下列命題

①互為共軛復(fù)數(shù)的兩數(shù)之差必是純虛數(shù);

②如果讓實數(shù)a與純虛數(shù)ai對應(yīng),那么實數(shù)集與純虛數(shù)集之間具有一一對應(yīng)關(guān)系;

③復(fù)平面上,虛軸上的各點與純虛數(shù)是一一對應(yīng)的;

④在復(fù)平面上與復(fù)數(shù)3+4i對應(yīng)的向量是唯一確定的.

中,正確命題的個數(shù)是   

[  ]

A.0個   B.1個   C.2個   D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2,求實數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當n為奇數(shù)時,動點P(x、y)的軌跡為C1.當n為偶數(shù)時,動點P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點,求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點A,使點A與點B(x,0)(x>0)的最小距離不小于,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2,求實數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當n為奇數(shù)時,動點P(x、y)的軌跡為C1.當n為偶數(shù)時,動點P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點,求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點A,使點A與點B(x,0)(x>0)的最小距離不小于,求實數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案