【題目】某手機(jī)廠商推出一款6吋大屏手機(jī),現(xiàn)對500名該手機(jī)用戶(200名女性,300名男性)進(jìn)行調(diào)查,對手機(jī)進(jìn)行評分,評分的頻數(shù)分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(Ⅰ)完成下列頻率分布直方圖,并指出女性用戶和男性用戶哪組評分更穩(wěn)定(不計(jì)算具體值,給出結(jié)論即可);
(Ⅱ)根據(jù)評分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數(shù)的分布列和期望.
【答案】解:(Ⅰ)女性用戶和男性用戶的頻率分布表分別如下左、右圖:
由圖可得女性用戶更穩(wěn)定.
(Ⅱ)運(yùn)用分層抽樣從男性用戶中抽取20名用戶,評分不低于8(0分)有6人,其中評分小于9(0分)的人數(shù)為4,從6人中任取3人,記評分小于9(0分)的人數(shù)為X,則X取值為1,2,3, ;P(X=2)= = ; .
所以X的分布列為
X | 1 | 2 | 3 |
P |
.
【解析】(I)根據(jù)已知可得頻率,進(jìn)而得出矩形的高= ,即可得出圖形.(II)運(yùn)用分層抽樣從男性用戶中抽取20名用戶,評分不低于8(0分)有6人,其中評分小于9(0分)的人數(shù)為4,從6人中任取3人,記評分小于9(0分)的人數(shù)為X,則X取值為1,2,3,利用超幾何分布列的計(jì)算公式即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識,掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設(shè)小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時,求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱是“回歸數(shù)列”.
(1)①前項(xiàng)和為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
②通項(xiàng)公式為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
(2)設(shè)是等差數(shù)列,首項(xiàng),公差,若是“回歸數(shù)列”,求的值;
(3)是否對任意的等差數(shù)列,總存在兩個“回歸數(shù)列”和,使得成立,請給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求f(x)的極值;
(2)當(dāng)0<x<e時,求證:f(e+x)>f(e﹣x);
(3)設(shè)函數(shù)f(x)圖象與直線y=m的兩交點(diǎn)分別為A(x1 , f(x1)、B(x2 , f(x2)),中點(diǎn)橫坐標(biāo)為x0 , 證明:f'(x0)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l: ( 為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線P(x0 , y0)上點(diǎn)P的極坐標(biāo)為 ,Q為曲線C2上的動點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于,兩點(diǎn).
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)的極坐標(biāo)為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,與均是以為直角頂點(diǎn)的等腰直角三角形,點(diǎn)是的中點(diǎn),點(diǎn)是邊上的任意一點(diǎn).
(1)求證::
(2)在平面中,是否總存在與平面平行的直線?若存在,請作出圖形并說明:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1+a2+a3+…an=2n﹣an(n∈N+).?dāng)?shù)列{bn}滿足bn= ,則{bn}中的最大項(xiàng)的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,已知側(cè)面ABB1A1是菱形,側(cè)面BCC1B1是正方形,點(diǎn)A1在底面ABC的投影為AB的中點(diǎn)D.
(1)證明:平面AA1B1B⊥平面BB1C1C;
(2)設(shè)P為B1C1上一點(diǎn),且 ,求二面角A1﹣AB﹣P的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com