【題目】在全社會(huì)推行素質(zhì)教育的大前提下,更強(qiáng)調(diào)了學(xué)生的全面發(fā)展,只有全面重視體育鍛煉,才能使學(xué)生德智體美全面發(fā)展。為了解某高校大學(xué)生的體育鍛煉情況,做了如下調(diào)查統(tǒng)計(jì)。該校共有學(xué)生10000人,其中男生6000人,女生4000人。為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集200位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這200個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)的分組區(qū)間為:,,,,,,估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有50位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
女生 | 男生 | 總計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí)間不超過4小時(shí) | |||
每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí) | |||
總計(jì) |
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
【答案】(1)應(yīng)該收集80位女生的樣本數(shù)據(jù); (2)估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率為0.75;(3)能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“該校學(xué)生的每周體育運(yùn)動(dòng)的平均時(shí)間與性別有關(guān)”.
【解析】
(1)由題意,根據(jù)女生所占的比例,列出,即可求解;
(2)根據(jù)頻率方程直方圖中概率的計(jì)算,即可求解200位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的頻率;
(3)列出的列聯(lián)表,利用公式求得的值,根據(jù)附表,即可判定.
(1)由題題,得,所以應(yīng)該收集80位女生的樣本數(shù)據(jù),
(2)根據(jù)頻率分布直方圖,得200位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的頻率為:
.
因此可估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率為0.75.
(3)列出的列聯(lián)表,如下:
女生 | 男生 | 合計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí)間不超過4小時(shí) | 30 | 20 | 50 |
每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí) | 50 | 100 | 150 |
合計(jì) | 80 | 120 | 200 |
.
所以能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“該校學(xué)生的每周體育運(yùn)動(dòng)的平均時(shí)間與性別有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水稻是人類重要的糧食作物之一,耕種與食用的歷史都相當(dāng)悠久,日前我國南方農(nóng)戶在播種水稻時(shí)一般有直播、撒酒兩種方式.為比較在兩種不同的播種方式下水稻產(chǎn)量的區(qū)別,某市紅旗農(nóng)場于2019年選取了200塊農(nóng)田,分成兩組,每組100塊,進(jìn)行試驗(yàn).其中第一組采用直播的方式進(jìn)行播種,第二組采用撒播的方式進(jìn)行播種.得到數(shù)據(jù)如下表:
產(chǎn)量(單位:斤) 播種方式 | [840,860) | [860,880) | [880,900) | [900,920) | [920,940) |
直播 | 4 | 8 | 18 | 39 | 31 |
散播 | 9 | 19 | 22 | 32 | 18 |
約定畝產(chǎn)超過900斤(含900斤)為“產(chǎn)量高”,否則為“產(chǎn)量低”
(1)請(qǐng)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)100塊直播農(nóng)田的平均產(chǎn)量(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)
(2)請(qǐng)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“產(chǎn)量高”與“播種方式”有關(guān)?
產(chǎn)量高 | 產(chǎn)量低 | 合計(jì) | |
直播 | |||
散播 | |||
合計(jì) |
附:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2α﹣4cosα=0.已知直線l的參數(shù)方程為(為參數(shù)),點(diǎn)M的直角坐標(biāo)為.
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若在處取得極值,求實(shí)數(shù)的值.
(2)求函數(shù)的單調(diào)區(qū)間.
(3)若在上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C1:y=x2(p>0)的焦點(diǎn)與雙曲線C2:-y2=1的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的焦距為8,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形。
(1)求的方程;
(2)設(shè)為的左焦點(diǎn),為直線上任意一點(diǎn),過點(diǎn)作的垂線交于兩點(diǎn),.
(i)證明:平分線段(其中為坐標(biāo)原點(diǎn));
(ii)當(dāng)取最小值時(shí),求點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,其離心率為
(1)求橢圓的方程;
(2)過橢圓的右焦點(diǎn)作直線(軸除外)與橢圓交于不同的兩點(diǎn),,在軸上是否存在定點(diǎn),使為定值?若存在,求出定點(diǎn)坐標(biāo)及定值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品8件和B類產(chǎn)品15件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品10件和B類產(chǎn)品25件,已知設(shè)備甲每天的租賃費(fèi)300元,設(shè)備乙每天的租賃費(fèi)400元,現(xiàn)車間至少要生產(chǎn)A類產(chǎn)品100件,B類產(chǎn)品200件,所需租賃費(fèi)最少為__元
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com