若橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)的兩焦點(diǎn)關(guān)于直線y=x的對(duì)稱點(diǎn)均在橢圓內(nèi)部,則橢圓的離心率e的取值范圍為
 
分析:根據(jù)題意,橢圓的兩焦點(diǎn)關(guān)于直線y=x的對(duì)稱點(diǎn)為F1'(0,-c)、F2'(0,c).由點(diǎn)F1'與F2'都在橢圓的內(nèi)部建立關(guān)于a、b、c的不等式,解出a>
2
c
,再利用橢圓離心率的公式加以計(jì)算,可得該橢圓的離心率范圍.
解答:解:∵橢圓
x2
a2
+
y2
b2
=1
的焦點(diǎn)為F1(-c,0)、F2(c,0),
∴兩焦點(diǎn)關(guān)于直線y=x的對(duì)稱點(diǎn)為F1'(0,-c)、F2'(0,c).
∵點(diǎn)F1'與F2'都在橢圓的內(nèi)部,
02
a2
+
c2
b2
<1
,即
c2
a2-c2
<1,解之得a>
2
c
,因此可得e=
c
a
2
2
,
又∵橢圓的離心率e∈(0,1),∴該橢圓的離心率e∈(0,
2
2
).
故答案為:(0,
2
2
點(diǎn)評(píng):本題給出橢圓滿足的條件,求橢圓的離心率的取值范圍.著重考查了對(duì)稱點(diǎn)的求法、點(diǎn)到橢圓的位置關(guān)系和橢圓的標(biāo)準(zhǔn)方程及其簡(jiǎn)單性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓
x2
a2
+y2=1(a>0)的一條準(zhǔn)線經(jīng)過(guò)拋物線y2=-8x的焦點(diǎn),則該橢圓的離心率為( 。
A、
1
2
B、
1
3
C、
3
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓
x2
a2
+y2=1(a>0)
與雙曲線
x2
2
-y2=1
有相同的焦點(diǎn),則a=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•西城區(qū)一模)雙曲線C:
x2
2
-y2=1
的離心率為
6
2
6
2
;若橢圓
x2
a2
+y2=1(a>0)
與雙曲線C有相同的焦點(diǎn),則a=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:南京模擬 題型:單選題

若橢圓
x2
a2
+y2=1(a>0)的一條準(zhǔn)線經(jīng)過(guò)拋物線y2=-8x的焦點(diǎn),則該橢圓的離心率為( 。
A.
1
2
B.
1
3
C.
3
2
D.
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:西城區(qū)一模 題型:填空題

雙曲線C:
x2
2
-y2=1
的離心率為_(kāi)_____;若橢圓
x2
a2
+y2=1(a>0)
與雙曲線C有相同的焦點(diǎn),則a=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案