【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,過拋物線的焦點(diǎn)且斜率為1的直線與拋物線交于A、B兩點(diǎn),若

(1)求拋物線的方程;

(2)若AB的中垂線交拋物線于C、D兩點(diǎn),求過A、B、C、D四點(diǎn)的圓的方程.

【答案】(1);(2).

【解析】

(1)先聯(lián)立直線方程和拋物線方程并消去,利用韋達(dá)定理結(jié)合弦長(zhǎng)公式可計(jì)算.也可以利用焦點(diǎn)弦公式是焦點(diǎn)弦的傾斜角)來(lái)計(jì)算.

(2)由(1)得到的中點(diǎn)的坐標(biāo),故可得的直線方程,聯(lián)立的直線方程和拋物線的方程后可得的中點(diǎn)(即為所求圓的圓心),再利用弦心距和弦長(zhǎng)計(jì)算半徑后可得圓的標(biāo)準(zhǔn)方程.

(1)法一:據(jù)題意設(shè)拋物線方程為.

,即.

設(shè),.則

,∴

法二:,∵ ,∴.

,∴ ,∴.

(2)由(1)知,中點(diǎn),∴的方程為:,即

.

設(shè),.

,∴的中點(diǎn).由(1)知道的中點(diǎn)為,所以,∴所求圓的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若都是從集合中任取的一個(gè)數(shù),求函數(shù)有零點(diǎn)的概率;

2)若都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在棱長(zhǎng)為1的正方體中,點(diǎn)上移動(dòng),點(diǎn)上移動(dòng),,連接.

1)證明:對(duì)任意,總有平面;

2)當(dāng)為何值時(shí),的長(zhǎng)度最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某巨型摩天輪.其旋轉(zhuǎn)半徑50米,最高點(diǎn)距地面110米,運(yùn)行一周大約21分鐘.某人在最低點(diǎn)的位置坐上摩天輪,則第35分鐘時(shí)他距地面大約為( )米.

A. 75 B. 85 C. 100 D. 110

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某學(xué)校高二年級(jí)學(xué)生的物理成績(jī),從中抽取名學(xué)生的物理成績(jī)百分制作為樣本,按成績(jī)分成5組:,頻率分布直方圖如圖所示,成績(jī)落在中的人數(shù)為20

男生

女生

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

1的值;

2根據(jù)樣本估計(jì)總體的思想,估計(jì)該校高二學(xué)生物理成績(jī)的平均數(shù)和中位數(shù);

3成績(jī)?cè)?0分以上含80分為優(yōu)秀,樣本中成績(jī)落在中的男、女生人數(shù)比為1:2,成績(jī)落在中的男、女生人數(shù)比為3:2,完成列聯(lián)表,并判斷是否所有95%的把握認(rèn)為物理成績(jī)優(yōu)秀與性別有關(guān)

參考公式和數(shù)據(jù):

050

005

0025

0005

0455

3841

5024

7879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有某高新技術(shù)企業(yè)年研發(fā)費(fèi)用投入(百萬(wàn)元)與企業(yè)年利潤(rùn)(百萬(wàn)元)之間具有線性相關(guān)關(guān)系,近5年的年科研費(fèi)用和年利潤(rùn)具體數(shù)據(jù)如下表:

年科研費(fèi)用(百萬(wàn)元)

1

2

3

4

5

企業(yè)所獲利潤(rùn)(百萬(wàn)元)

2

3

4

4

7

(1)畫出散點(diǎn)圖;

(2)求對(duì)的回歸直線方程;

3)如果該企業(yè)某年研發(fā)費(fèi)用投入8百萬(wàn)元,預(yù)測(cè)該企業(yè)獲得年利潤(rùn)為多少?

參考公式:用最小二乘法求回歸方程的系數(shù)計(jì)算公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù),其中

)若的極值點(diǎn),求的值;

)求的單調(diào)區(qū)間;

)若上的最大值是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】代表紅球,代表藍(lán)球,代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由的展開式表示出來(lái),如:“1”表示一個(gè)球都不取、“”表示取出一個(gè)紅球,而“”用表示把紅球和藍(lán)球都取出來(lái).以此類推,下列各式中,其展開式可用來(lái)表示從5個(gè)有區(qū)別的紅球、5個(gè)無(wú)區(qū)別的藍(lán)球、5個(gè)無(wú)區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)若曲線的參數(shù)方程為為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線的參數(shù)方程為為參數(shù)),,且曲線與曲線的交點(diǎn)分別為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案