設(shè)函數(shù)f(x)的定義域?yàn)?B>R,對任意實(shí)數(shù)xy都有f(x+y)=f(x)+f(y),當(dāng)x>0時(shí)f(x)<0,且f(3)=-4.

(1)求f(0),f(1)的值

(2)求證f(x)為奇函數(shù);

(3)在區(qū)間[-9,9]上,求f(x)的最值.

答案:
解析:

  (1)f(0)=0,f(1)=-4/3

  (2)證明:令xy=0,得f(0)=0

  令y=-x,得f(0)=f(x)+f(-x),即f(-x)=-f(x)

  ∴f(x)是奇函數(shù)

  (3)解:1°,任取實(shí)數(shù)x1、x2∈[-9,9]且x1x2,這時(shí),x2x1>0,

  f(x1)-f(x2)=f[(x1x2)+x2]-f(x2)=f(x1x2)+f(x2)-f(x1)=-f(x2x1)

  因?yàn)?I>x>0時(shí)f(x)<0,∴f(x1)-f(x2)>0

  ∴f(x)在[-9,9]上是減函數(shù)

  故f(x)的最大值為f(-9),最小值為f(9).

  而f(9)=f(3+3+3)=3f(3)=-12,f(-9)=-f(9)=12.

  ∴f(x)在區(qū)間[-9,9]上的最大值為12,最小值為-12.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)示范校質(zhì)檢一理)(14分)

設(shè)函數(shù)f(x)是定義在上的奇函數(shù),當(dāng)時(shí), (a為實(shí)數(shù)).

   (Ⅰ)求當(dāng)時(shí),f(x)的解析式;

   (Ⅱ)若上是增函數(shù),求a的取值范圍;

   (Ⅲ)是否存在a,使得當(dāng)時(shí),f(x)有最大值-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lgx,則滿足f(x)>0的x的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),并且f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),有f(x)=x,則f(3.5)=____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x+1,則f()=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)(上海卷) 題型:填空題

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lg x,則滿足f(x)>0

x的取值范圍是                  .

 

查看答案和解析>>

同步練習(xí)冊答案
鍏� 闂�