(2012年高考(江西理))已知數(shù)列{an}的前n項(xiàng)和,且Sn的最大值為8.
(1)確定常數(shù)k,求an;
(2)求數(shù)列的前n項(xiàng)和Tn.
【解析】
解: (1)當(dāng)時,取最大值,即,故,從而,又,所以
(2) 因?yàn)?img width=124 height=41 src='http://thumb.zyjl.cn/pic1/2012/08/11/20/2012081120280511713331.files/image934.gif' >,
所以
【點(diǎn)評】本題考查數(shù)列的通項(xiàng),遞推、錯位相減法求和以及二次函數(shù)的最值的綜合應(yīng)用.利用來實(shí)現(xiàn)與的相互轉(zhuǎn)化是數(shù)列問題比較常見的技巧之一,要注意不能用來求解首項(xiàng),首項(xiàng)一般通過來求解.運(yùn)用錯位相減法求數(shù)列的前n項(xiàng)和適用的情況:當(dāng)數(shù)列通項(xiàng)由兩項(xiàng)的乘積組成,其中一項(xiàng)是等差數(shù)列、另一項(xiàng)是等比數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考(江西文))觀察下列事實(shí)|x|+|y|=1的不同整數(shù)解(x,y)的個數(shù)為4 , |x|+|y|=2的不同整數(shù)解(x,y)的個數(shù)為8, |x|+|y|=3的不同整數(shù)解(x,y)的個數(shù)為12 .則|x|+|y|=20的不同整數(shù)解(x,y)的個數(shù)為 ( 。
A.76 B.80 C.86 D.92
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考(江西文))等比數(shù)列的前項(xiàng)和為,公比不為1。若,且對任意的都有,則_________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考(江西文))已知數(shù)列|an|的前n項(xiàng)和(其中c,k為常數(shù)),且a2=4,a6=8a3
(1)求an;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com