【題目】下列說法中正確的是(
A.命題“p∧q”為假命題,則p,q均為假命題
B.命題“?x∈(0,+∞),2x>1”的否定是“?x°∈(0,+∞),2≤1”
C.命題“若a>b,則a2>b2”的逆否命題是“若a2<b2 , 則a<b”
D.設x∈R,則“x> ”是“2x2+x﹣1>0”的必要而不充分條件

【答案】B
【解析】解:對于A.命題“p∧q”為假命題,則p,q至少有一個均為假命題,故錯; 對于B,命題“x∈(0,+∞),2x>1”的否定是“x°∈(0,+∞),2≤1”,正確;
對于C,命題“若a>b,則a2>b2”的逆否命題是“若a2b2 , 則a≤b”,故錯;
對于D,設x∈R,x> 時2x2+x﹣1>0成立,2x2+x﹣1>0時,x> 或x<﹣1,故錯;
故選:B.
【考點精析】認真審題,首先需要了解命題的真假判斷與應用(兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=|x﹣a|,a∈R.
(1)當a=1時,求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函數(shù)g(x)=f(x)﹣|x﹣3|的值域為A,且[﹣1,2]A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個參賽隊只比賽一場),共有高一、高二、高三三個隊參賽,高一勝高二的概率為 ,高一勝高三的概率為 ,高二勝高三的概率為P,每場勝負獨立,勝者記1分,負者記0分,規(guī)定:積分相同者高年級獲勝.
(Ⅰ)若高三獲得冠軍概率為 ,求P.
(Ⅱ)記高三的得分為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知AB=1,AC=2,∠A=60°,若點P滿足 = ,且 =1,則實數(shù)λ的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知n為正整數(shù),數(shù)列{an}滿足an>0,4(n+1)an2﹣nan+12=0,設數(shù)列{bn}滿足bn=
(1)求證:數(shù)列{ }為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實數(shù)t的值:
(3)若數(shù)列{bn}是等差數(shù)列,前n項和為Sn , 對任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足:f(x)= ,且f(x+2)=f(x),g(x)= ,則方程f(x)=g(x)在區(qū)間[﹣7,3]上的所有實數(shù)根之和為(
A.﹣9
B.﹣10
C.﹣11
D.﹣12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x2﹣ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若h(x)的單調(diào)減區(qū)間是( ,1),求實數(shù)a的值;
(2)若f(x)≥g(x)對于定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(3)設h(x)有兩個極值點x1 , x2 , 且x1∈(0, ).若h(x1)﹣h(x2)>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(2x+1)er+1+mx,若有且僅有兩個整數(shù)使得f(x)≤0.則實數(shù)m的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若﹣1<x<1時,均有f(x)≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案