精英家教網 > 高中數學 > 題目詳情

設函數,其中,區(qū)間.
(Ⅰ)求的長度(注:區(qū)間的長度定義為;
(Ⅱ)給定常數,當時,求長度的最小值.

(Ⅰ)(Ⅱ)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,試判斷此函數上的單調性,并求此函數
上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求函數的單調遞增區(qū)間;
(Ⅱ)當時,在曲線上是否存在兩點,使得曲線在兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標的取值范圍;若不存在,請說明理由;
(Ⅲ)若在區(qū)間存在最大值,試構造一個函數,使得同時滿足以下三個條件:①定義域,且;②當時,;③在中使取得最大值時的值,從小到大組成等差數列.(只要寫出函數即可)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2﹣|x|,無窮數列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義域為的函數是奇函數.
(Ⅰ)求實數的值;
(Ⅱ)判斷函數的單調性;
(Ⅲ)若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是奇函數。
(1)求實數a的值;
(2)判斷函數在R上的單調性并用定義法證明;
(3)若函數的圖像經過點,這對任意不等式恒成立,求實數m的范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(Ⅰ)若,求函數的極值;
(Ⅱ)若函數上有極值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,請用定義證明上為減函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數對定義域內任意,有
⑴求;
⑵判斷的奇偶性.

查看答案和解析>>

同步練習冊答案