精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,BD與AC相交于O,過O的直線分別交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,則EF=
 
分析:由已知中EF∥AD∥BC,我們易得到OAD∽△OCB,△OAE∽△CAB,進(jìn)而我們可以求出AD,EF,BC三條平行線段分線段所成的比例,結(jié)合AD=12,BC=20,即可求出答案.
解答:解:∵EF∥AD∥BC,
∴△OAD∽△OCB,
OA:OC=AD:BC=12:20
△OAE∽△CAB
OE:BC=OA:CA=12:32
∴EF=
12
32
×20
=15
故答案為:15
點評:本題考查的知識點是平等線分線段成比例定理,其中求出平行線分線段所成的比例是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=a,點M在線段EF上.
(1)求證:BC⊥平面ACFE;
(2)當(dāng)EM為何值時,AM∥平面BDF?證明你的結(jié)論;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)點M在線段EF上運動,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
(1)圖中與
EF
、
CO
共線的向量;
(2)與
EA
相等的向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.
(I)求證:BC⊥平面ACFE;
(II)若M為線段EF的中點,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),求cosθ.

查看答案和解析>>

同步練習(xí)冊答案