【題目】如圖,在四棱錐 中, 平面 ,底面是等腰梯形,且 ,其中 .

1)證明:平面 平面 .

2)求點(diǎn) 到平面 的距離。

【答案】(1)見解析;(2)

【解析】

(1)由題意結(jié)合已知數(shù)據(jù),利用勾股數(shù)證得,又由 平面可得,從而證得 平面,再利用面面垂直的判定定理可得結(jié)論.

2)先求得,利用余弦定理及三角形面積公式求得,利用等體積轉(zhuǎn)化根據(jù)可得距離.

1)過點(diǎn)于點(diǎn).

因?yàn)榈酌?/span> 是等腰梯形,且 ,所以

中, ,同理可得

因?yàn)?/span> 相似,所以

所以 ,則

因?yàn)?/span> 平面平面,所以

因?yàn)?/span> 平面平面,且 ,所以 平面

因?yàn)?/span> 平面 ,所以平面 平面

2)因?yàn)?/span>平面,所以 ,

因?yàn)?/span> ,所以

中,因?yàn)?/span>

所以,

所以 ,則的面積為

設(shè)點(diǎn)到平面 的距離為,則三棱錐的體積

因?yàn)?/span> ,所以,解得

故點(diǎn)到平面的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題α:函數(shù)的定義域是R;命題β:在R上定義運(yùn)算xy=x1-y).不等式(x-ax+a)<1對(duì)任意實(shí)數(shù)x都成立.

1)若α、β中有且只有一個(gè)真命題,求實(shí)數(shù)a的取值范圍;

2)若α、β中至少有一個(gè)真命題,求實(shí)數(shù)a的取值范圍;

3)若α、β中至多有一個(gè)真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2a,F(xiàn)為CD的中點(diǎn).

(1)求證:AF∥平面BCE;

(2)判斷平面BCE與平面CDE的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若f (x)在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;

(2)若a=0,x0<1,設(shè)直線y=g(x)為函數(shù)f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

)設(shè)不等式的解集為C,當(dāng)時(shí),求實(shí)數(shù)取值范圍;

)若對(duì)任意,都有成立,試求時(shí),的值域;

)設(shè),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計(jì)劃引進(jìn)一批新能源汽車制造設(shè)備,通過市場(chǎng)分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且,由市場(chǎng)調(diào)研知,每輛車售價(jià)6萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

1)求出2019年的利潤(rùn)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額成本)

22019年產(chǎn)量為多少(百輛)時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,其離心率為,以原點(diǎn)為圓心,橢圓的短軸長(zhǎng)為直徑的圓被直線截得的弦長(zhǎng)等于.

(1)求橢圓的方程;

(2)設(shè)為橢圓的左頂點(diǎn),過點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,與軸相交于點(diǎn),過原點(diǎn)與平行的直線與橢圓相交于兩點(diǎn),問是否存在常數(shù),使恒成立?若存在,求出;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè), 滿足約束條件,則的最大值為_______

【答案】4

【解析】,畫出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最大值為.

[點(diǎn)睛]本小題主要考查線性規(guī)劃的基本問題,考查了指數(shù)的運(yùn)算. 畫二元一次不等式表示的平面區(qū)域的基本步驟:①畫出直線(有等號(hào)畫實(shí)線,無等號(hào)畫虛線);②當(dāng)時(shí),取原點(diǎn)作為特殊點(diǎn),判斷原點(diǎn)所在的平面區(qū)域;當(dāng)時(shí),另取一特殊點(diǎn)判斷;③確定要畫不等式所表示的平面區(qū)域.

型】填空
結(jié)束】
14

【題目】已知數(shù)列的前項(xiàng)和公式為,若,則數(shù)列的前項(xiàng)和__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開后化簡(jiǎn)得直角坐標(biāo)方程.(II)求得兩點(diǎn)的坐標(biāo), 設(shè)點(diǎn),代入向量,利用三角函數(shù)的值域來求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標(biāo)方程為.

(Ⅱ)由直線的方程可得點(diǎn),點(diǎn).

設(shè)點(diǎn),則 .

.

由(Ⅰ)知,則 .

因?yàn)?/span>,所以.

型】解答
結(jié)束】
23

【題目】選修4-5:不等式選講

已知函數(shù) .

(Ⅰ)若對(duì)于任意 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案