(任選一題)
(1)已知α、β為實(shí)數(shù),給出下列三個論斷:
①|(zhì)α-β|≤|α+β|②|α+β|>5  ③|α|>2
2
,|β|>2
2

以其中的兩個論斷為條件,另一個論斷為結(jié)論,寫出你認(rèn)為正確的命題是
①③⇒②
①③⇒②

(2)設(shè){an}和{bn}都是公差不為零的等差數(shù)列,且
lim
n→∞
an
bn
=2
,則
lim
n→∞
b1+b2+…+bn
na2n
的值為
1
8
1
8
分析:(1)觀察知,可由①③推出②,本題是一個開放式題,結(jié)論可能不唯一,本題只證明①③推出②,首先由①|(zhì)α-β|≤|α+β|得出α與β同號,再結(jié)合③得出|α+β|的取值范圍,與5比較即可得到結(jié)論.
(2)設(shè){an}和{bn}的公差分別為d1 和d2,有條件可得d1=2d2,根據(jù)等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式化簡要求的式子
并把d1=2d2代入,再利用數(shù)列極限的運(yùn)算法則求出結(jié)果.
解答:(1)解:由①|(zhì)α-β|≤|α+β|知,α,β同號,故|α+β|=|α|+|β|,
又由③|α|>2
2
,|β|>2
2
可得|α+β|>4
2
,
又4
2
≈5.6>5,
所以有|α+β|>5成立,
綜上知①③推出②,
故答案為①③⇒②.
(2)解:設(shè){an}和{bn}的公差分別為d1 和d2,
lim
n→∞
an
bn
=
lim
n→∞
a1+(n-1)d1
b1+(n-1)d2
=
d1
d2
=2,∴d1=2d2
lim
n→∞
b1+b2+…+bn
na2n
=
lim
n→∞
nb1+
n(n-1)
2
d2
n[a1+(2n-1)d1 ]
=
d2
2
d1
=
d2
4d1
=
1
8
,
故答案為:
1
8
點(diǎn)評:第(1)題考察不等式的證明,解題的關(guān)鍵是判斷出條件與結(jié)論,本題難點(diǎn)是判斷出那兩個做條件可以保證第三個成立,此類題是開放式題答案可能不唯一,故找出一個正確的來就行,此類題開放式題在近幾年新教材實(shí)驗(yàn)區(qū)基本上不出現(xiàn)了,本題較抽象,不易想,容易出錯.
第(2)題主要考查等差數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式,求數(shù)列的極限的方法,得到d1=2d2,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)(兩題任選一題)
A、(不等式選講)關(guān)于x的不等式|x|+|x-1|≤a2-a+1的解集為空集,則實(shí)數(shù)a的取值范圍
(0,1)
(0,1)

B、(極坐標(biāo)與參數(shù)方程)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,已知直線l1、l2的極坐標(biāo)方程分別為θ=0,θ=
π
3
,直線l3的參數(shù)方程為
x=1+tcos135°
y=tsin135°
(t為參數(shù)),則直線l1、l2、l3所圍成的面積為
3-
3
4
3-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(極坐標(biāo)與參數(shù)方程選講選做題)設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上的動點(diǎn)P(x,y)到直線l距離的最大值為
3+
7
10
10
3+
7
10
10

B.(不等式選講選做題)若存在實(shí)數(shù)x滿足不等式|x-3|+|x-5|<m2-m,則實(shí)數(shù)m的取值范圍為
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

C.(幾何證明選講選做題)如圖,PC切⊙O于點(diǎn)C,割線PAB經(jīng)過圓心O,弦CD⊥AB于點(diǎn)E.已知⊙O的半徑為3,PA=2,則PC=
4
4
.OE=
5
9
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(任選一題)
(1)已知α、β為實(shí)數(shù),給出下列三個論斷:
①|(zhì)α-β|≤|α+β|②|α+β|>5  ③|α|>2
2
,|β|>2
2

以其中的兩個論斷為條件,另一個論斷為結(jié)論,寫出你認(rèn)為正確的命題是______.
(2)設(shè){an}和{bn}都是公差不為零的等差數(shù)列,且
lim
n→∞
an
bn
=2
,則
lim
n→∞
b1+b2+…+bn
na2n
的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年廣東省深圳市松崗中學(xué)高考數(shù)學(xué)模擬試卷(2)(解析版) 題型:解答題

(任選一題)
(1)已知α、β為實(shí)數(shù),給出下列三個論斷:
①|(zhì)α-β|≤|α+β|②|α+β|>5  ③|α|>2,|β|>2
以其中的兩個論斷為條件,另一個論斷為結(jié)論,寫出你認(rèn)為正確的命題是   
(2)設(shè){an}和{bn}都是公差不為零的等差數(shù)列,且,則的值為   

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷