【題目】棱長為1的正方體內(nèi)部有一圓柱,此圓柱恰好以直線為軸.有下列命題:
①圓柱的母線與正方體所有的棱所成的角都相等;
②正方體所有的面與圓柱的底面所成的角都相等;
③在正方體內(nèi)作與圓柱底面平行的截面,則截面的面積;
④圓柱側(cè)面積的最大值為.
其中正確的命題是______.
【答案】①②④
【解析】
根據(jù)正方體的特性分析可知①②正確,作出一個與圓柱底面平行的截面,舉出反例得到③錯誤,利用幾何法找出圓柱的底面半徑,列式計算圓柱側(cè)面積,結(jié)合均值不等式計算得到④正確,得到答案.
如圖所示:易知圓柱的母線與平行,由正方體的對稱性可知與其每條側(cè)棱間的夾角都相等,①正確;
設(shè)分別為對應(yīng)棱的中點,易知共面,
易證,,則平面,平面,故,同理可得,故平面,
又圓柱的底面與垂直,
故平面與圓柱的底面平行,
根據(jù)正方體的特點可知,平面與正方體所有側(cè)面的夾角相同,
故正方體所有的面與圓柱的底面所成的角都相等,②正確;
此時截面的面積為,③錯誤;
設(shè)圓柱底面半徑為,則圓柱的底面必與過點的三個面相切,
且切點分別在線段上,設(shè)在上的切點為,為圓柱的一條高,
根據(jù)對稱性知:,則圓柱的高為,
,
當(dāng),即時等號成立,④正確.
故答案為:①②④.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線,過點的直線交拋物線于,,,兩點.當(dāng)垂直于軸時,的面積為.
0
(1)求拋物線的方程:
(2)設(shè)線段的垂直平分線交軸于點.
①證明:為定值:
②若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的普通方程為,以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求的參數(shù)方程與的直角坐標(biāo)方程;
(II)射線與交于異于極點的點,與的交點為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A是以BC為直徑的圓O上異于B,C的動點,P為平面ABC外一點,且平面PBC⊥平面ABC,BC=3,PB=2,PC,則三棱錐P﹣ABC外接球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點坐標(biāo);
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可吸入肺顆粒物.我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo),某試點城市環(huán)保局從該市市區(qū)2019年上半年每天的監(jiān)測數(shù)據(jù)中隨機的抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如下莖葉圖所示(十位為莖,個位為葉).
(1)在這15天的日均監(jiān)測數(shù)據(jù)中,求其中位數(shù);
(2)從這15天的數(shù)據(jù)中任取2天數(shù)據(jù),記表示抽到監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求的分布列及數(shù)學(xué)期望;
(3)以這15天的日均值來估計該市下一年的空氣質(zhì)量情況,則一年(按365天計算)中平均有多少天的空氣質(zhì)量達(dá)到一級或二級.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且.
(1)若為等差數(shù)列,且
①求該等差數(shù)列的公差;
②設(shè)數(shù)列滿足,則當(dāng)為何值時,最大?請說明理由;
(2)若還同時滿足:
①為等比數(shù)列;
②;
③對任意的正整數(shù)存在自然數(shù),使得、、依次成等差數(shù)列,試求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速公路免費政策”某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內(nèi)通過的車輛數(shù),統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.例如:10點04分,記作時刻64.
(1)估計這600輛車在9:20~10:40時間段內(nèi)通過該收費點的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)為了對數(shù)據(jù)進行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設(shè)抽到的4輛車中,在9:20~10:00之間通過的車輛數(shù)為X,求X的分布列與數(shù)學(xué)期望;
(3)由大數(shù)據(jù)分析可知,車輛在每天通過該收費點的時刻T服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).
參考數(shù)據(jù):若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)中,圓,圓。
(Ⅰ)在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓的極坐標(biāo)方程,并求出圓的交點坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求圓的公共弦的參數(shù)方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com